International
Journal of Cosmology, Astronomy and Astrophysics

ISSN: 2641-886X

Mini Review Article

Navier-Stokes Equation: A Solution

Paul T E Cusack*

BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada

*Corresponding author: Paul T E Cusack, BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada, Tel: +1-506-652-6350, E-mail: St-michael@hotmail.com

Received: November 28, 2018 Accepted: December 13, 2018 Published: January 7, 2019

Citation: Cusack PTE. Navier-Stokes Equation: A Solution. Int J Cosmol Astron Astrophys. 2019; 1(1): 7-8. doi: 10.18689/ijcaa-1000103

Copyright: © 2019 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Download PDF

Abstract

An expert of the Navier-Stokes Equation requested one solution or example, of a solution to the Navier Stokes Equation. Using Astrotheology variables published in many paper by this author, we provide a solution to Navier-Stokes.

Keywords: Navier-Stokes; Astrothoelogy; Reynoldʼs Number; Youngʼs modulus

Introduction

In this brief paper, we provide a solution to the Navier -Stokes Equation [1-3]. The answer to the variables lie in AT Math (Astrotheology, Cusackʼs Universe) shown in (Figure 1).

ρ(∂v/∂t +v ·∇v)=∇P+∇T +F
ρ=4/π=127.3
v=a=sin 45°=cos 45°=1/√2
P=S.F/ Area
S.F. =8/3=2.667
R=1
θ=Reynoldʼs Number=0.402 rads=23.03 degrees
T=Youngʼs modulus =(π-e)=0.4233=cuz
F=0
127.3(1/√2 +1/√2 ×1/√2 cos(0.402) )= 8/3/(π(1)2) + ∇(0.4233)+0
127.3(116.72)=-0.8489 + ∇ (0.4233) cos (0.402)
23.373=0.4233 (0.9202) ∇
Let:
∇= (∂/∂x + ∂/∂y+ ∂/dz)
∂/∂x =∂/∂y=∂/dz
∇=1/0.167=1/γ (monatomic gas)
3 (∂/∂x)=1/(1/6)
∂/∂x= 2= dM/dt
(2+x)3= x3+6x2+12 x +8=0
x=-1
x= 1/2 i(√3+5i)
Let i=-.0618
=4.196
Ln x=0.868=sin 1
Ln x =Ln 1/ Ln 2.368=Ln 1-Ln 23.68
eLn x=e-Ln 23.68
x=e-sin 1
=1/esin 1
=e-1/M Where M=118 Number of elements in the Periodic Table.
So (2+1) = 3=Eigen Value, speed of light
(2+x)= 2+13.03=15.03= Mass Gap=1/G

Conclusion

This is the solution to the Navier Stokes Equation.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Cusack P. Astro-Theology, Cusacks Universe. J. Phys. Math. 2016; 7(2): 8.   
  2. Steward I. In Pursuit of the Unknown. NY 2012.   
  3. Cusack P. The Universal Vector. Ope Acc J. Math Theo Phys.2018; 1(5): 186-190. doi: 10.15406/oajmtp.2018.01.00032