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Abstract
Based on the hypothesis related to fractal structure of electrode one can develop the 

quantitative theory for description of the measured voltammograms (VAGs). We suppose 
that at least two percolation channels take part in the process of its formation. One channel 
can be associated with the fractal structure of electrodes while the second one can be 
related to the heterogeneous structure of the double electric layer. Based on the obtained 
fitting function that follows from the suggested theory it becomes possible to differentiate 
the state of two measured electrodes (with regeneration or without application of this 
procedure). This result obtained directly from the measured data can find a wide application 
in electrochemistry for analysis of other VAGs, especially in detection of possible traces of 
substances that take place in chemical reactions in the vicinity of heterogeneous electrodes. 

Keywords: Electrochemistry; Quantitative Fractal Theory; Regenerated/No Regenerated 
Electrodes; Self-Similar Voltammograms; Traces Detection.

List of abbreviations: BLC - bell-like curve, DEL - double electric layer, GCE - the glassy 
carbon electrode, ECs - the eigen-coordinates method, LLSM - the linear least square 
method, PD - potential distribution, VAG(s) - voltammogram(s).

Introduction and Formulation of the Problem
As it is known for detection of the limit of sensitivity of the presence of a substance by 

electrochemical methods a researcher uses the series of measurements in the presence of 
analyte (i.e. a blank experiment) or the background electrolyte. Detection of this signal 
determines the minimal concentration of the electrolyte in the analyzed object [1]. Detection 
of this signal gives a possibility (with some value of probability) to extract a useful signal 
among random factors (noises) and based on the ratio signal/noise (S/N) to evaluate the 
desired limit of detection. This limit can be evaluated in accordance with standard deviation 
(dispersion of the background signal) using the ratio 3sbg/b, where b determines the sensor 
sensitivity coefficient. The uncontrollable factors (noises) can have different origins. It can be 
suppressed by chemical/instrumental methods [2,3] or based on some mathematical 
methods, for example, with the help of projection method suggested by chemometrics [4]. 
The complete elimination of the background is impossible. Especially, it creates a big 
problem in interpretation of complex multi-parametric data in the presence of multisensors. 
To this problem one can refer, for example, the VAGs associated with electronic “tongue” [5].

For the increasing of electrochemical resolution many methods were suggested and 
their descriptions one can find in paper [6]. However, even in the conditions of the well-
resolved peaks, the measured VAGs contain the background current component (for 
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example, capacity current), which strongly distorts the measured 
VAG, especially at small electrolyte concentrations. This problem 
complicates the data decoding and decreases the sensitivity 
and accuracy of the electrochemical analysis in detection of 
possible traces of the presence substance. These existing 
problems are described in papers [3,6]. The mathematical 
modeling of the voltammetric behavior on different types of 
electrodes is discussed in [7]. But it is necessary to note that 
many leading researches (Compton et al) demonstrate the 
forms of the VAGs for electrodes having large surface and for 
relatively large concentrations of depolarizator (at large values 
of the faraday currents) and, naturally, the “background” 
problems are skipped and not discussed properly [7].

In the conditions of multivariate study the synergetic 
effects of the present components in formation of the double 
electric layer (DEL) strongly distort the measured curves [8,9]. 
We want to stress also that approach based on the subtraction 
of the signals in the systems of the electronic tongue type 
becomes useless [10,11].

It is obvious that new approaches for decoding and 
mathematical description of the VAGs are necessary. They should 
take into account the factors that influence on the dispersion of 
the background signals in all possible range of potential created 
by the used sensor. In this aspect a certain interest can be referred 
to approaches associated with electrochemical behavior of 
electroactive particles on different electrodes based on the ideas 
of fractal geometry [12-17]. It is well known that electrochemical 
activity as response of the electrode varies over its surface. One 
can propose some cases of such typical phenomena:

a)	� partially blocked electrode,
b)	� composite electrode (made of composite material 

with nanoparticles),
c)	� chemically modified electrode (especially with 

catalytic active particles),
d)	� Screen printed partially blocked electrode with 

random particles of various forms on the surface.
In all these cases a chaotic distribution of particles is 

observed. Partially blocked electrode is used for ordinary case 
especially when a macro electrode covered with inert particles 
of a material is different to that of the underlying electrode 
surface. These particles can block the diffusional paths of the 
electroactive species to the electrode surface. To be true, this 
conclusion is only correct if both zones of the electrodes - 
blocked and exposed - are of macro size. If they are of micron-
sized dimensions then the voltammetric response is much 
more difficult to predict [7]. This brief review of the present 
situation allows formulating the problem that can be 
considered in this paper. 

The authors suggest an original approach to description 
of the real background electrolyte based on the confirmed 
real data. This approach based on the fractal theory allows to 
describe quantitatively the behavior of the measured VAGs 
associated with real electrolyte in two conditions: (a) when the 
sensor was regenerated; (b) when the sensor becomes idle 
and was not subjected to the regeneration procedure. 

For more accurate detection of these different states it 
would be desirable to suggest the analytical form of the given 
voltammogram (VAG) or the fitting function. Based on the 
preliminary results obtained earlier in [18] in this paper we give 
some arguments for justification of the desired dependence of 
the function J (U). With the help of the eigen-coordinates 
method (developed earlier by one of the authors (RRN)) in [19] 
we proved that the function J (U) is described by a linear 
combination of the power-law exponents with log-periodic 
corrections. As it follows from the general theory described 
below the desired fitting function based on the fractal structure 
of the medium (one can imply the surrounding DEL) and 
heterogeneous electrodes themselves can be written as
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The number of the power-law exponents nl (l = 1,2,…,L) 
for description of the given VAG and the value of the final 
mode K should be sufficient for keeping the value of the 
relative fitting error less than 5%-7%. The parameter z 
coincides with the dimensionless potential Ush/U0 shifted to 
positive region (z >0). The power-law exponents nl (l = 1, 2,…, 
L) are real but the complex-conjugated parts are appeared 
from the log-periodic functions Prl(lnz). For explanation and 
justification of expression (1) chosen as the basic fitting 
function one can suggest rather general theory based on idea 
of formation of some self-similar percolation channels 
connecting the total current under the applied potential. This 
theory justifies expression (1) chosen as the fitting function 
and naturally explains the appearance of the complex-
conjugated power-law exponents. 

The content of the paper is organized as follows. In the 
second section we describe the experimental details. In the 
third chapter we suggest the general theory that explains 
expression (1) and its possible modifications. In the fourth 
section the desired algorithm for the fitting of the background 
currents for different electrodes is described. In the final 
section we discuss the obtained results and speculate about 
the physical/chemical meaning of the suggested fitting 
function. 

Experimental 
Reagents and the used equipment

All voltammetric measurements were performed with the 
help of three-electrode scheme and the usage of voltammetric 
analyzer IVA-5 (Yekaterinburg, Russia). The glassy carbon 
electrode (GCE) was used as the working electrode. The glassy 
carbon pivot and chloride-silver Ag/AgCl (3.5 М KCl) electrode 
were used as an auxiliary electrode and comparison electrode, 
correspondingly. Voltammetric measurements were 
performed in the potential range from 0.0 up to -1.5 V in the 
given cycling regime. For the cleaning of the electrode surface 
at mechanical regeneration the standard GOI polishing paste 
was used. 
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Voltammetric measurements
In the electrochemical cell 10 ml of the standard solution 

of 0.1 М KCl was placed. Each experiment includes the 
electrochemical cleaning of the standard GCE during 30 sec at 
the applied potential 0.4 V. The cyclic VAGs were registered in 
the potential range 0.0 - (-1.5) V with the scanning rate 0.1 V/
sec. All measurements were performed at room temperature 
(21-23°C). We obtained two types of VAGs: the first type - the 
measured data for electrodes without regeneration (electrodes 
were kept in the measured cell during the whole period of 
measurements). The second type of VAGs was obtained with 
the usage of regeneration procedure, when the surface of 
electrodes was polished on the smooth paper by a special GOI 
polishing paste having small grains. For verification of stability 
of the measurements each cycle of experiment was repeated 
100 times. 

Results and Discussion
The general theory for quantitative description of the 
desired VAG

For explanation and justification of the chosen curve (1) 
we put forward the following arguments. Let the function f 
(zxn) describes the distribution of the dimensionless potential 
z=U/U0 over some fractal electrode. The arising current J (z) 
evoked by the applied potential is distributed over percolation 
regions and the distribution of these regions has a fractal 
(scaling) structure. Mathematically this supposition will be 
expressed in the form of the sum

( ) ( )
N

n n
l l l l

n N
J z R b f z

=−

= ⋅ ξ∑
	

(2)

Here the value n
l lR b  determines the percolation region 

that can coincide with volume (dE=3), surface (dE=2) or 
conducting line (dE=1). The function ( )n

lf zξ determines the 
distribution function of the potentials that can be specific for 
each l-th “channel” of the type (2) that provides the percolation 
process of the total current from one electrode to another 
one. For any heterogeneous structure that constitutes a 
possible fractal structure of the used electrodes and 
percolation regions of the conducting “surrounding” 
(including also the DEL) we suppose that all conducting 
channels form an additive combination of currents that can 
connect two or more electrodes with each other. So, one can 
write the following expression for the total current as
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We suppose also that the function describing the potential 
distribution (PD) for each microscopic current ( )n

lf zξ  has 
the following asymptotic behavior at small and large values of 
N

For z <<1

2
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If the values of these functions ( )n
lf zξ  (l = 1,2,…,L) are 

small for large and small values of z then one can show [20-
22] that the fractal sum (2) can be reduced to the simplified 
functional equation of the type

1( ) ( ),l l
l

J z J z
b

ξ ≅ 	 (5)

For any combination of parameters bl, x. It implies that 
asymptotic influence of the PD function becomes small (

1 1
0( ), ( ) 1N N N N

k kb f z b f z A+ − − −ξ ξ < <  in the ends of a 
fractal region [20]. The solution of the functional equation (5) 
is expressed in the form
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The log-periodic function is defined by expression (1). Let 
us suppose that we have at least two “channels” of the type (2) 
and the total percolation process is expressed as
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Excluding two channels J1,2(z) from the first two lines and 
inserting them to the final line we obtain the following 
functional equation for the total current

( ) ( ) ( )2
1 0tot tot totJ z a J z a J zξ = ξ +

,	 (8)

where 

( ) ( ) 1
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−
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	 (9)

In paper [22] it was shown that this functional equation 
has the following solution 

2 2
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Using the mathematical induction method one can show 
that this result can be generalized for “L” conducting channels. 
For this case we obtain 
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As for the case L = 2 the desired roots kl are related to the 
scaling parameters bl by means of simple relationships kl = 1/
bl (l = 1,2,…,L). The solution of the functional equation (11) has 
the following form [22]
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In order to minimize the number of the fitting parameters 
we consider in detail the case L=2. The fitting function that 
can describe the desired VAG can be rewritten in the form
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In order to reduce number of the fitting parameters in 
expression (13) we suppose that two channels involved in the 
percolation process have equal contributions (K = Q). For this 
case the function (13) admits further simplification and finally 
for the case L=2 we obtain the following fitting function 
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(14)

In the next section we show how to calculate the desired 
parameters k1,2 and nonlinear fitting parameters as lnx and K. 
Obviously, the common scaling parameter lnx that enters in 
the general expressions (12-14) should be interpreted in the 
mean value sense. This simplification and selection the 
common value for all possible channels is explained in the 
Mathematical Appendix. 

Some peculiarities of the fitting of expression (14) to real data
In this fitting function we have 4 nonlinear parameters 

k1,2, lnx and K. Other fitting parameters as (1,2) (1,2)
0 , ,k kE Ac As  

equaled to 4K+1 are found by the LLSM. The value of the 
desired x is located in the interval 

20 ( 1)< ξ < ξ ξ > ,	 (15)

While the final value of K is calculated from the condition 
that the value of the fitting error should not exceed 5-7% for 
simple case. This value is calculated as

( ( ) ( , )Re (%) 100%
( ( ))

totstdev y z J zlErr
mean y z

− ν
= ⋅



,	
(16)

Where the fitting function ( , )totJ z ν


coincides with the 
simplified expression (14), the fitting vector (ln , )v v K≡ ξ



and y(z) coincides with mean measurement VAG. The 
evaluation of this mean measurement from the given set of 
data is explained in the next section. We should stress here 
that in the case of negative values of k that can enter in the 
fitting function (14) the corresponding expression should be 
replaced as

( ) ( )ln /lnln /ln lncos
ln

zz zξξ  
−κ ⇒ κ π ξ  .

	 (17)

The Description of the Data Processing Procedure
The basic problem that can be solved in the frame of the 

suggested theory is formulated as follows: is it possible “to 
notice” the difference between non-regenerated and 
regenerated electrodes and express their differences 
quantitatively? All treatment procedure can be divided on 
three basic stages that can be recommended as a common 
procedure for all similar measurements, as well. 

Stage 1. Reduction to Three Mean Measurements.
We show this procedure for electrode without 

regeneration. It is also explained by the figures given below. 
The same procedure will be applied to analysis of the VAGs 
with regeneration. The initial hysteresis (cycle) of the measured 
function J(U) for electrodes without regeneration is shown in 
Fig.1. Accordingly, the VAGs corresponding to the regeneration 
procedure were shown in Fig.2. 
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 J50

 J60

 J70

 J90

The hysteresis of the VAG for 
electrodes without regeneration 

branch(dn)

branch(up)

Figure 1. The hysteresis (cycling) of the VAG corresponding to 
electrodes used without process of regeneration.

For further analysis we divide the hysteresis on two 
branches (up and down) correspondingly and consider them 
separately. 
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Figure 2. The hysteresis of the VAG corresponding to electrodes 
subjected to the regeneration procedure. 

One can notice visually the difference between these 
VAGs but the basic aim is to find the fitting function for these 
curves and then “read” and compare them quantitatively. 

The basic aim of this stage is to receive the averaged 
VAGs that can be prepared for the fitting procedure with the 
function (14). In order to realize the correct averaging 
procedure we consider the branches (up and down) forming 
the initial hysteresis separately. We consider the distribution 
of the slopes with respect to mean measurement

( )
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m j j
m j
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Here M=100 coincides with the total number of 
measurements for the given background. The sufficiently 
large of repetitions (50 < M <100) of the same electrochemical 
background are necessary for analysis of statistical peculiarities 
and the influence of external conditions that will take place 
during the whole experiment. The parenthesis in (18) 
determines the scalar product between two functions having 
j=1,2,…,N measured data points. If we construct the plot Slm 
with respect to successive measurement m and then rearrange 
all measurements in the descending order SL1>SL2>…>SLM, 
then all measurements can be divided in three groups. The 
“up” group has the slopes located in the interval (1+Dup, SL1); 
the mean group (denoted by “mn”) with the slopes in (1–Ddn, 
1+Dup); the down group (denoted by “dn”) with the slopes in 
(1–Ddn, SLM). The values Dup,dn are chosen for each set of the 
VAG measurements separately. In our case we chose the 
conventional “3sigma” criterion and put 

1 1 1,
3 3

M
up dn

Sl Sl− −
∆ = ∆ = . This curve has a great importance 

and reflects the quality of the realized successive measurements 
and the used equipment. Different cases for 4 different 
branches and two types of electrodes are shown on Figs. 3(a, 
b, c, d), correspondingly. The bell-like curve (BLC) (that can be 
fitted with the help of four fitting parameters α, β, A, B) is 
obtained after elimination of the corresponding mean value 
and subsequent integration can be described by the non-

normalized beta-function 

( ) ( )( ; , , , ) 1Bd m A B A m M m Bα βα β = − − +
,	 (19)

and reflects the quality of the realized measurements. This 
presentation is very convenient and contains additional 
information about the process of measurement that before 
was not taken into account. The straight line (it can have a 
slope not coinciding with horizontal line) divides all 
measurements in three groups: (a) the beginning point of a 
BLC up to the first intersection point determines the number 
Nup of measurements ( ) ( )up

mJ x  (m=1,2,…, Nup) entering in 
the “up” group and is characterized by the mean Yup(x) curve; 
(b) the region between the two intersection points determines 
the number Nmn of measurements ( ) ( )mn

mJ x  (m=1,2,…,Nmn) 
in the “mn” group with slope close to one and characterized 
by the set of measurements forming the mean curve Ymn(x) 
and, finally, (c) the rest of the measurements Ndn in the “dn” 
group is covered by the curve Ydn(x). If the number of 
measurements Nmn > Nup+Ndn then this cycle of 
measurements is characterized as “good” (stable), in the case 
when Nmn»Ndn»Nup the measurements (and the 
corresponding equipment) are characterized as “acceptable”, 
and the case when Nmn<Nup+ Ndn is characterized as “bad” 
(very unstable). Quantitatively, all three cases can be 
characterized by the ratio

100% 100%Nmn NmnRt
Nup Ndn Nmn M

   = ⋅ = ⋅   + +    .	
(20)

In the last expression (4), M determines the total number 
of measurements. Based on this ratio one can determine 
easily three classes of measurements: “good” when 60% < Rt 
< 100%, “acceptable” when 30% < Rt < 60%, and “bad” when 
0 < Rt < 30%. This preliminary analysis is supported by Figs. 
3(a, b, c, d) for four branches of the measurements with/
without electrodes regeneration. 
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Figure 3a. The distributions of the slopes corresponding to the “up” 
branches of experiments without regeneration. Number of 

measurements participating in the averaging procedure and 
satisfying to the condition 

((Nup=4)+(Ndn=62)+(Nmn=34)=(M=100)) and the parameter Rt 
from (4) are shown in the small figure above. 
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Figure 3b. The distributions of the slopes corresponding to the “dn” 
branches of experiments without regeneration. Number of 

measurements participating in the averaging procedure and 
satisfying to the condition 

((Nup=4)+(Ndn=31)+(Nmn=65)=(M=100)) and the parameter 
Rt=65 from (4) are shown in the small figure above. 

-10 0 10 20 30 40 50 60 70 80 90 100 110

0.9

1.0

1.1

1.2

-10 0 10 20 30 40 50 60 70 80 90 100 110

0.0

0.5

1.0

1.5

In
te

gr
al

 d
ist

rib
ut

io
ns

 o
f t

he
 

co
rre

sp
on

di
ng

 s
lo

pe
s

Number of measurements

 Bd

Nup=7,Ndn=18,Nmn=75,Rt=75

Di
st

rib
ut

io
n 

of
 th

e 
slo

pe
s 

fo
r "

up
" b

ra
nc

he
s

Ex
pe

rim
en

t w
ith

 re
ge

ne
ra

tio
n

m

 Sl

1+∆up

1-∆dn

ordered measurements

Figure 3c. The distributions of the slopes corresponding to the “up” 
branches of experiments with regeneration. Number of 

measurements participating in the averaging procedure and 
satisfying to the condition 

((Nup=7)+(Ndn=18)+(Nmn=75)=(M=100)) and the parameter 
Rt=75 from (4) are shown in the small figure above. 
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Figure 3d. The distributions of the slopes corresponding to the “dn” 
branches of experiments with regeneration. Number of 

measurements participating in the averaging procedure and 
satisfying to the condition 

((Nup=7)+(Ndn=18)+(Nmn=75)=(M=100)) and the parameter 
Rt=75 from (4) are shown in the small figure above. 

So, if this clusterization will be realized then instead of 
100 initial measurements we have approximately
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Here the function Slm determines the slopes located in the 
descending order and the parameters Dup,dn associated with 
the value of the confidence interval is selected for each 
specific set of measurements separately. After realization of 
this useful procedure one can fit only the mean function 
Ymn(x). Other two functions Yup(x) and Ydn(x) become 
strongly-correlated and can be associated with two close 
curves in accordance with expression (8)

1 0
2

( ) ( ) ( ),
( ) ( ), ( ) ( ), ( ) ( )tot tot tot

Yup x a Ydn x a Ymn x
Yup x J z Ydn x J z Ymn x J z

= +

≡ ξ ≡ ξ ≡  
(22)

This simple observation allows us to find the unknown 
constants a1,0 from the LLSM and calculated the desired roots 
from the quadratic equation

2
1 0 0, 1/ , 1, 2.i ia a b iκ − κ − = κ = = 	 (23)

Equation (23) allows restoring also the scaling parameters 
bi entering to the percolation channel (2). In equation (22) we 
have two independent variables x and z. It is necessary to 
choose the common scale that could be acceptable for the 
realization of the fitting procedure. If we choose the following 
values for the down (dn) VAG branch as LUmax = ln(Umin/ -1) 
with U0=-1 and LUmin = ln(10-2) and for the “up” branch the 
variable LUup=-LUdn then in this scale

( )max min maxln , 1, 2,...,j j
jx z LU LU LU j N

N
≡ = + − = , (24)

corresponding VAGs remains invariant relatively the chosen 
number of points. So, this scale as the most convenient is 
chosen for the fitting purposes. 

Stage 2. The Fitting of the Mean Curves Ymn(lnz) to the 
Function (14)

For realization of the desired fit we normalize these curves 
to the interval [0,1] that cannot change essentially the essence 
of the applied approach. As it has been mentioned above, we 
chose the logarithmic scale (24) where the corresponding 
VAGs do not change their form. The normalized mean curve 
for two branches and two experimental situations (without 
and with electrodes regeneration) are calculates as

( )
( ) min( ( ))( )

max ( ) min( ( ))
Ymn x Ymn xy x

Ymn x Ymn x
−

= + ε
− .

	 (25)

We take the small value of the e = 10-6. These two simple 
linear transformations realized for the mean curves Ymn(x) allow 
avoiding some large values of the fitting parameters and 
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uncertainties related the taking of the natural logarithm from 
zero. The final fit of the normalized curves for all four branches 
are depicted on Figs.4 (a,b), correspondingly. The additional 
fitting parameters (lnx, k1,2, n1,2) and the distributions of the 
amplitudes (1,2) (1,2),k kAc As  (k=1,2,…,K=4) entering into 
expression (14) for these four normalized branches are collected 
in Tables 1, 2, correspondingly. So, this theory helps to restore 
the fractal parameters and partly its discrete structure that 
characterize the percolation structure of the conducting channels. 

-6 -4 -2 0

0.0

0.5

1.0

 VAG without regeneration
 Fit VAG without regeneration
 VAG with regeneration
 Fit VAG with regeneration

Br
an

ch
es

(d
n)

 w
ith

ou
t/w

ith
 e

lec
tro

de
s 

re
ge

ne
ra

tio
n 

ln(z)=x

Figure 4a. The fitting of the normalized VAGs with respect to 
expression (14) for two normalized branches(dn) corresponding to 

electrodes with/without regeneration. The fitting parameters of 
these curves are collected in Tables 1 and 2. The influence of 

regeneration is clearly noticeable. 
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Figure 4b. The fitting of the normalized VAGs with respect to 
expression (14) for two branches (up) corresponding to electrodes 
with/without regeneration. The fitting parameters of these curves 

are collected also in Tables 1 and 2. 

Table 1. The additional fitting parameters figuring in the fitting 
function (14).

The name of the file ln(x) k1 k2 n1 n2 E0
Rel 

Err(%)
Branch(dn)

without regeneration -7.20473 1.55397 -0.99921 0.06118 -1.10127E-4 -4853.72 1.15779

Branch(dn)
with regeneration -7.03939 1.75352 -1.00197 0.07978 2.79645E-4 3709.16 0.4818

Branch(up)
without regeneration 4.72466 1.86917 -1.00083 -0.13239 -1.74584E-4 -2.61452 0.2215

Branch(up)
with regeneration 7.20473 1.53822 -0.9975 -0.05977 3.48023E-4 2541.8 0.19426

Table 2. The distribution of the amplitudes (1,2) (1,2),k kAc As
that enter in the fitting function (14) for 4 types of the 
normalized VAGs. The total number of modes K=4. 

The name of the file (1)
kAc (1)

kAs (2)
kAc (2)

kAs

Branch(dn)
without regeneration

-8686.56
-480.91
3277.03
-74.6822

-3437.28
-10061.5
281.068
226.427

27198.5
-10523.2
-1058.47
56.7248

4834.29
12368.5
-2336.64
2.59182

Branch(dn)
with regeneration

7723.36
1671.33
-2343.98
-0.74759

2018.34
7707.55
404.825
-158.348

-21785
6226.69
1127.61
-36.6513

-1934.03
-10706.2
1448.66
6.87951

Branch(up)
without regeneration

1.75014
2.94648
-1.78289
0.23001

-0.05769
-0.66586
0.5965

-0.11056

4.33094
-2.14537
0.44001
-0.00658

13.7754
-10.1256
2.38856
-0.10908

Branch(up)
with regeneration

5483.71
1257.89
-1684.63
0.14841

1289.13
5495.32
297.719
-114.672

-15004.2
4052.47
836.338
-24.8502

-1086.73
-7534.03
962.631
7.36171

Stage 3. Reduction to Three Incident Points as the Test of 
a Possible Self-Similarity

In this subsection we want to suggest a test for detection of 
self-similar curves that form the measured VAG. Let us choose 
some interval [x0, xk-1] containing a set of k data points {(x0, y0), 
… , (xk-1, yk-1) K=0,1,…,k-1}. One can reduce this information into 
three incident points if the first point is associated with the mean 
value of the amplitudes and the other two points are associated 
to their maximal and minimal values, correspondingly. So, this 
selection represents the simplest reduction of the given set of k 
randomly selected points to three characteristic points 
p1=mean{y0, … , yk-1}, p2=max{y0, … , yk-1}, p3=min{y0, … , yk-1}. If 
in the result of this reduction procedure we obtain the curve 
similar to the initial one then one conclude that obtained three 
curves are self-similar to the initial curve. This procedure helps 
to decrease the number of initial points and consider the 
reduced curves distributed over on the set of “fat” points. R = 
[N/L], r = 0,1,…,R-1. Here the symbol [..] defines the integer part 
of the ratio N/K, where N is the total number of points and K is 
the length of the chosen “cloud” of points. The result of 
reduction of two “down” initial VAGs and corresponding to 
electrodes with/without regeneration are shown in Figs. 5(a,b). 
For R=50, L=24 the self-similarity property is clearly noticeable. 
The same result is obtained for two self-similar curves 
corresponding to “up” branches and thereby it is not shown. 
This simple test serves as an additional argument for selection 
of the fitting model (14) described above. 
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Figure 5a. This figure demonstrates clearly the self-similarity property 
between initial curve (solid lines) corresponding to down branches 
and their reduced curves (points). The length of a cloud of points 

subjected to reduction procedure L=24. Number of “fat” points R=50. 
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Figure 5b. On the central figure we show the reduced curves 
corresponding to “down” branches for electrodes with/without 
regeneration having R=50 “fat” points. On the small figures we 

demonstrate the strong correlations between the mean curve and 
two curves corresponding to reduction to maximal/minimal points 

in each section L=24 correspondingly. 

Conclusion
May be this theory is not complete but it reflects the 

influence of existing fractal structure of the measured electrodes 
and conducting media that take place during the electrochemical 
process. We believe that this theory can find its wide application 
for quantitative description of a various VAGs. In particular, in 
solutions of electroanalysis problems associated with in 
detection of possible traces of the solute substances, when the 
peaks of oxidation\restoration potentials are close to each 
other. This phenomenon is observed in analysis of VAGs 
associated with optically active compounds as enantiomers, 
having practical importance in medicine. From practical point of 
view, the suggested quantitative method one can apply for 
evaluation of the effectiveness of the medical drug and identify 
one enantiomer (the micro component of the medical drag with 
negative reaction to the human’s body) and in its abundance, 
when it has a positive influence. In this case, the total background 
current will coincide with current of the given solute mixed with 
current belonging to macro-component. The detection of the 
micro-component current one can evaluate quantitatively 
analyzing, in turn, the measured VAG based on the approach 
suggested above. But the additional and justified arguments 
tested on a wide experimental material need a further research.

Mathematical Appendix 
In this Appendix we want to justify the common selection 

of the scaling parameter x that enters in the general fitting 
formula (12). Let us suppose that instead of the scaling factor 
xn we have the product 1 2... nξ ξ ξ  generated by the random 
structure of the percolation cluster. We suppose also that 
these random scaling factors have small deviations relatively 
the mean value ,i i iξ = ξ + δ δ << ξ . If we put these 
factors into the product we obtain

( )

( )

1 11

2

2
1

exp ln exp ln 1

1 1exp ... , .
2

n n n
n i

i i
i ii

n
n

n ss
i

in

= ==

=

     δ ξ = ξ + δ = ξ +        ξ        

 δδ
 ≅ ξ − + δ = δ
 ξ ξ 

∑ ∑∏

∑
 

(A1)

This useful relationship shows that it is possible to replace 
the set of the random scaling parameters by one averaged 
parameter in accordance with the relationship

2

2
1exp ...
2

 δδ
 ξ→ ξ − +
 ξ ξ  	

(A2)

Therefore in the main text we imply this parameter in the 
averaged sense, which is evaluated with the help of the fitting 
procedure.
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