���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 132.148.112.237  /  Your IP : 216.73.216.191
Web Server : Apache
System : Linux p3plmcpnl497166.prod.phx3.secureserver.net 4.18.0-553.54.1.lve.el8.x86_64 #1 SMP Wed Jun 4 13:01:13 UTC 2025 x86_64
User : m483e053zf9r ( 10082050)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /home/m483e053zf9r/public_html/madridge.org/journals-admin/uploads/fulltext/IJPSR/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /home/m483e053zf9r/public_html/madridge.org/journals-admin/uploads/fulltext/IJPSR/ijpsr-1000113.php
<?php
$extpath="../";
include 'includes/jrnheader.php';
include 'includes/jrnleftfulltext-panel.php';
//$imgpath="";
?>
<div class="fultextmenu" id="fultext-menu">
<div class="hidden-xs">
<div class="affix affixside-menu" data-spy="affix" data-offset-top="1100">
<h3 class="s-property-title">Full Text Contents</h3>
<ul class="list-unstyled fulltext-ul">
<li><a href="#articleinfo">Article Info</a></li>
<li><a href="#abstract">Abstract</a></li>
<li><a href="#intro">Introduction</a></li>
<li><a href="#references">References</a></li>
</ul>
</div>
</div>
</div>
</div><!--end of leftpanel col-md-3-->
<div class="col-md-9 padding-top-15">
<div class="container">
<ul class="nav nav-tabs" style="border-bottom: 0px;">
<li class="active"><a href="#articleinfo">Article Info</a></li>
<li><a href="#abstract">Abstract</a></li>
<li><a href="#intro">Introduction</a></li>
<li><a href="#references">References</a></li>
</ul>
</div>
<div class="row">
<div class="col-md-12">
<section class="post">
<div class="row">
<div class="col-md-12">
<div class="articledetails article-header clearfix">
<p class="art-type" id="articleinfo">Research Article</p>
<p class="art-title">Charged Anisotropic Matter with Modified Chaplygin Equation of State</p>
<p class="art-author"><?php $authors="Manuel Malaver<sup>1,2*</sup>, and Hamed Daei Kasmaei<sup>3</sup>"; echo (stristr($authors,$coauthor))?str_replace($coauthor,"<a href='".$extpath."authors/".$courl."' target='_blank'>".$coauthor."</a>",$authors):$authors; ?></p>
<p class="art-affl"><sup>1</sup>Bijective Physics Institute, Idrija, Slovenia<br/><sup>2</sup>Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela<br/><sup>3</sup>Department of Applied Mathematics and Computer Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran</p>
<p class="art-aff"><b>*Corresponding author: <?php $corresponding_author="Manuel Malaver"; echo ($coauthor!="" && $coauthor==$corresponding_author)?"<a href='".$extpath."authors/".$courl." 'target='_blank'>".$coauthor."</a>":$corresponding_author;?></b>, Professor, Department of Basic Sciences, Maritime University of the Caribbean, Venezuela, Tel: + (58)4129206490, E-mail: <a href="mailto:mmf.umc@gmail.com">mmf.umc@gmail.com</a></p>
<p class="art-aff"><b>Received:</b> November 22, 2020 <b>Accepted:</b> January 11, 2021 <b>Published:</b> January 22, 2021</p>
<p class="art-aff"><b>Citation:</b> Malaver M, Kasmaei HD. Charged Anisotropic Matter with Modified Chaplygin Equation of State. <i>Int J Phys Stud Res</i>. 2021; 4(1): 83-90. doi: <a href="https://doi.org/10.18689/ijpsr-1000113">10.18689/ijpsr-1000113</a></p>
<p class="art-aff"><b>Copyright:</b> &copy; 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<p><a href="<?php echo $extpath;?><?php echo $jres['journal_link'];?>/ijpsr-1000113.pdf" class="btn btn-danger pull-right" target="_blank">Download PDF</a></p>
</div>
<div class="articlecontent">
<p class="art-subhead" id="abstract">Abstract</p>
<p class="art-para">In this paper, we found a new model for compact star with charged anisotropic matter distribution considering an extended version of the Chaplygin equation of state. We specify a particular form of the metric potential Z(x) that allows us to solve the Einstein-Maxwell field equations. The obtained model satisfies all physical properties expected in a realistic star such that the expressions for the radial pressure, energy density, metric coefficients, measure of anisotropy and the mass are fullywell defined and are regular in the interior of star. The solution obtained in this work can have multiple applications in astrophysics and cosmology.</p>
<p class="art-para"><b>Keywords:</b> Einstein-Maxwell field equations; Chaplygin equation of state; Metric potential; Radial pressure; Measure of anisotropy.</p>
<p class="art-subhead" id="intro">Introduction</p>
<p class="art-para">The study and description of static fluid spheres is an interesting area of research and one of great relevance in astrophysics due to formulation of the general theory of relativity <a href="#1" id="ref1">[1</a>,<a href="#2" id="ref2">2]</a>. One of the most important issues in general relativity is finding exact solutions to Einstein&#700;s field equations in order to propose physical models of compact stars as suggested by Delgaty and Lake <a href="#3" id="ref3">[3]</a> who constructed several analytic solutions that describe static perfect fluid and satisfy all the necessary conditions to be physically acceptable <a href="#3" id="ref3">[3]</a>. These exact solutions have also made it possible the way to study cosmic censorship and analyze the formation of naked singularities <a href="#4" id="ref4">[4]</a>.</p>
<p class="art-para">In the construction of theoretical models of stellar objects, the research of Schwarzschild <a href="#5" id="ref5">[5]</a>, Tolman <a href="#6" id="ref6">[6]</a> and Oppenheimer and Volkoff <a href="#7" id="ref7">[7]</a> are very important to be considered. Schwarzschild <a href="#5" id="ref5">[5]</a> found analytical solutions that allowed describing a star with uniform density, Tolman <a href="#6" id="ref6">[6]</a> developed a method to find solutions of static spheres of fluid and Oppenheimer and Volkoff <a href="#7" id="ref7">[7]</a> used Tolman&#700;s solutions to study the gravitational balance of neutron stars. It is important to mention that Chandrasekhar&#700;s contributions <a href="#8" id="ref8">[8]</a> in the model production of white dwarfs and in presence of relativistic effects and the works of Baade and Zwicky <a href="#9" id="ref9">[9]</a> fully propose the main physical concepts of neutron stars and also identify astronomic dense objects known as supernovas.</p>
<p class="art-para">The presence of the electric field can modify the values for surface redshift, luminosity, density and maximum mass for stars. Bekenstein <a href="#10" id="ref10">[10]</a> considered that the gravitational attraction may be balanced by electrostatic repulsion due to electric charge and pressure gradient. Komathiraj and Maharaj <a href="#11" id="ref11">[11]</a> obtained new classes of exact solutions to the Einstein-Maxwell system of equations for a charged sphere with a particular choice of one of the metric potentials. Ivanov <a href="#12" id="ref12">[12]</a> has studied and developed a wide variety of charged stellar models. More recently, Malaver and Kasmaei <a href="#13" id="ref13">[13]</a> proposed a model of charged anisotropic matter with nonlinear equation of state.</p>
<p class="art-para">It is well known the fact that the anisotropy plays a significant role in the studies of relativistic stellar objects <a href="#14" id="ref14">[14</a>-<a href="#26" id="ref26">26]</a>. The existence of solid core, presence of type 3A superfluid <a href="#27" id="ref27">[27]</a>, magnetic field, mixture of two fluids, a pion condensation and electric field <a href="#28" id="ref28">[28]</a> are most important reasonable facts that explain the presence of anisotropy. Bowers and Liang <a href="#14" id="ref14">[14]</a> generalized the equation of hydrostatic equilibrium for the case of local anisotropy. Bhar et al. <a href="#29" id="ref29">[29]</a> have studied the behavior of relativistic objects with anisotropic matter distribution considering the Tolman VII form for the gravitational potential.</p>
<p class="art-para">Many researchers have used a variety of analytical methods in order to try to obtain exact solutions of the Einstein-Maxwell field equations for anisotropic relativistic stars. It is very important to mention that the contributions of Komathiraj and Maharaj <a href="#11" id="ref11">[11]</a>, Thirukkanesh and Maharaj <a href="#30" id="ref30">[30]</a>, Maharaj et al. <a href="#31" id="ref31">[31]</a>, Thirukkanesh and Ragel <a href="#32" id="ref32">[32</a>,<a href="#33" id="ref33">33]</a>, Feroze and Siddiqui <a href="#34" id="ref34">[34</a>,<a href="#35" id="ref35">35]</a>, Sunzu et al. <a href="#36" id="ref36">[36]</a>, Pant et al. <a href="#37" id="ref37">[37]</a> and Malaver <a href="#38" id="ref38">[38</a>-<a href="#41" id="ref41">41]</a> needs to be considered in this field of research study. These studies suggest that the EinsteinMaxwell field equations are very important in the description of ultra compacts objects.</p>
<p class="art-para">The development of theoretical models of stellar structures can consider several forms of equations of state <a href="#42" id="ref42">[42]</a>. Komathiraj and Maharaj <a href="#43" id="ref43">[43]</a>, Malaver <a href="#44" id="ref44">[44]</a>, Bombaci <a href="#45" id="ref45">[45]</a>, Thirukkanesh and Maharaj <a href="#30" id="ref30">[30]</a>, Dey et al. <a href="#46" id="ref46">[46]</a> and Usov <a href="#28" id="ref28">[28]</a> assume linear equation of state for quark stars. Feroze and Siddiqui <a href="#34" id="ref34">[34]</a> considered a quadratic equation of state for the matter distribution and specified particular forms for the gravitational potential and electric field intensity. MafaTakisa and Maharaj <a href="#47" id="ref47">[47]</a> obtained new exact solutions to the EinsteinMaxwell system of equations with a polytropic equation of state. Thirukkanesh and Ragel <a href="#48" id="ref48">[48]</a> have obtained particular models of anisotropic fluids with polytropic equation of state which are consistent with the reported experimental observations. Malaver <a href="#49" id="ref49">[49]</a> generated new exact solutions to the Einstein-Maxwell system considering Van der Waals modified equation of state with polytropic exponent. Bhar and Murad <a href="#50" id="ref50">[50]</a> obtained new relativistic stellar models with a particular type of metric function and a generalized Chaplygin equation of state. Recently Tello-Ortiz et al. <a href="#51" id="ref51">[51]</a> also found an anisotropic fluid sphere solution of the Einstein-Maxwell field equations with a modified version of the Chaplygin equation.</p>
<p class="art-para">It is important to mention the fact that general relativity not only studies the interior of stellar objects, it also allows the analysis of different cosmological scenarios through the Einstein gravity theory as the existence of dark energy, dark matter, Phantom and Quintessence fields that were introduced to explain the accelerated expansion of the universe <a href="#51" id="ref51">[51</a>,<a href="#52" id="ref52">52]</a>. Chaplygin gas whose equation of state <i>P = -B/&#961;</i> where <i>P</i> is the pressure, <i>&#961;</i> the energy-density and B a positive constant, has been considered an alternative to the Phantom and Quintessence fields <a href="#50" id="ref50">[50</a>-<a href="#53" id="ref53">53]</a>. In order to adjust this equation of state to observational data has been rewritten as P = -B/&#961;<sup>&#969;</sup> with the parameter &#969; between 0 and 1 <a href="#53" id="ref53">[53]</a>. Furthermore, an extended version of the Chaplygin gas equation of state was proposed by Pourhassan <a href="#54" id="ref54">[54]</a> and its form is P = A &#961; - B/&#961;<sup>&#969;</sup> where Aa positive parameter constrained to <i>0 &lt; A &lt; 1/3</i>.</p>
<p class="art-para">In this paper, we generated a new model of charged anisotropic compact object with the modified Chaplygin equation of state proposed for Pourhassan <a href="#54" id="ref54">[54]</a> and studied by Bernardini and Bertolami <a href="#55" id="ref55">[55]</a>. The modified Chaplygin equation of state is described by P = A &#961; - B/&#961;<sup>&#969;</sup> where A, B, &#945; are constants and 0 &#8804; &#945; &#8804; 1. Using a particular form of gravitational potential <i>Z(x)</i> that is nonsingular, continuous and well behaved in the interior of the star, we can obtain a new class of static spherically symmetrical model for a charged anisotropic matter distribution. It is expected that the solution obtained in this work can be applied in the description and the study of internal structure of strange quark stars. The article is organized as follows: In the section &#8220;Einstein-Maxwell System of Equations&#8221;, we present Einstein-Maxwell field equations. In the section &#8220;Charged Anisotropic Model&#8221;, we make a particular choice for gravitational potential <i>Z(x)</i> and the electric field intensity and generated new models for charged anisotropic matter. In the section &#8220;Physical Requirements for the New Developed Model&#8221;, physical acceptability conditions are discussed. The physical properties and physical validity of these new solutions are analyzed in the &#8220;Physical Analysis&#8221; section. The conclusions of the results obtained are shown in the &#8220;Conclusion&#8221; section.</p>
<p class="art-subhead">Einstein-Maxwell System of Equations</p>
<p class="art-para">We consider a spherically symmetric, static and homogeneous space-time. In Schwarzschild coordinates, the metric is given by:</p>
<div class="art-img" id="e001">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e001.gif" class="img-responsive center-block"/></div>
<p class="art-para">where v(r) and &#955;(r) are two arbitrary functions.</p>
<p class="art-para">The Einstein field equations for the charged anisotropic matter are given by <a href="#30" id="ref30">[30]</a>:</p>
<div class="art-img" id="e002">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e002.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e003">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e003.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e004">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e004.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e005">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e005.gif" class="img-responsive center-block"/></div>
<p class="art-para">where <i>&#961;</i> is the energy density, <i>p<sub>r</sub></i> is the radial pressure, <i>E</i> is electric field intensity, <i>p<sub>t</sub></i> is the tangential pressure and primes denote differentiations with respect to <i>r</i>. Using the transformations <i>x=cr<sup>2</sup>, Z(x)=e&#8211;<sup>2&#955;(r)</sup></i> and <i>A<sup>2</sup>*y<sup>2</sup>(x)=e<sup>2v(r)</sup></i> with arbitrary constants A and c>0 suggested by Durgapal and Bannerji <a href="#56" id="ref56">[56]</a>, the Einstein field equations can be written as:</p>
<div class="art-img" id="e006">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e006.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e007">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e007.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e008">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e008.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e009">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e009.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e010">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e010.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e011">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e011.gif" class="img-responsive center-block"/></div><br/>
<p class="art-para">&#963; is the charge density, &#916;=<i>p<sub>t</sub>-p<sub>r</sub></i> is the anisotropy factor and dots denote differentiations with respect to <i>x</i>. With the transformations of <a href="#56" id="ref56">[56]</a>, the mass within a radius <i>r</i> of the sphere takes the form:</p>
<div class="art-img" id="e012">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e012.gif" class="img-responsive center-block"/></div>
<p class="art-para">In this paper, we assume the following equation of state where the radial pressure and the density <i>&#961;</i> are related to the following form:</p>
<div class="art-img" id="e013">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e013.gif" class="img-responsive center-block"/></div>
<p class="art-para">with A and B as constant parameters, and &#945;=1.</p>
<p class="art-para">with A and B as constant parameters and <i>&#961; = &#961;*+E<sup>2</sup></i>.</p>
<p class="art-subhead">Charged Anisotropic Model</p>
<p class="art-para">In this work, we take the form of the gravitational potential <i>Z(x)</i> as <sub>Z(x)</sub> =1-a<i>x</i> proposed for Malaver <a href="#38" id="ref38">[38]</a> and Thirukanesh and Ragel <a href="#48" id="ref48">[48]</a> where a is a real constant. This potential is regular at the origin and well behaved in the interior of the sphere. Following Ngubelanga et al. <a href="#57" id="ref57">[57]</a> for the electric field, we make the particular choice:</p>
<div class="art-img" id="e014">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e014.gif" class="img-responsive center-block"/></div>
<p class="art-para">This electric field is finite at the center of the star and remains continuous in the interior. Using <i>Z(x)</i> and <a href="#e014">eq. (14)</a> in <a href="#e006">eq. (6)</a>, we obtain</p>
<div class="art-img" id="e015">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e015.gif" class="img-responsive center-block"/></div>
<p class="art-para">Substituting <a href="#e015">eq. (15)</a> in <a href="#e013">eq. (13)</a>, the radial pressure can be written in the form:</p>
<div class="art-img" id="e016">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e016.gif" class="img-responsive center-block"/></div>
<p class="art-para">Using <a href="#e015">eq. (15)</a> in <a href="#e012">eq. (12)</a>, the expression of the mass function is</p>
<div class="art-img" id="e017">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e017.gif" class="img-responsive center-block"/></div>
<p class="art-para">With <a href="#e014">eq. (14)</a> and <i>Z(x)</i> in <a href="#e011">eq. (11)</a>, the charge density is</p>
<div class="art-img" id="e018">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e018.gif" class="img-responsive center-block"/></div>
<p class="art-para">With equations <a href="#e013">(13)</a>, <a href="#e014">(14)</a>, <a href="#e015">(15)</a> and <i>Z(x)</i>, <a href="#e007">eq. (7)</a> becomes:</p>
<div class="art-img" id="e019">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e019.gif" class="img-responsive center-block"/></div>
<p class="art-para">Integrating <a href="#e019">eq. (19)</a> we obtain:</p>
<div class="art-img" id="e020">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e020.gif" class="img-responsive center-block"/></div>
<p class="art-para">Where for the convenience we have let</p>
<div class="art-img" id="e021">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e021.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e022">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e022.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e023">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e023.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e024">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e024.gif" class="img-responsive center-block"/></div>
<p class="art-para">And <i>c<sub>1</sub></i> is the constant of integration.</p>
<p class="art-para">The metric functions e<sup>2&#955;</sup> and e<sup>2v</sup> can be written as:</p>
<div class="art-img" id="e025">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e025.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e026">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e026.gif" class="img-responsive center-block"/></div>
<p class="art-para">and the anisotropy factor &#916; is given by:</p>
<div class="art-img" id="e027">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e027.gif" class="img-responsive center-block"/></div>
<p class="art-subhead">Physical Requirements for the New Developed Model</p>
<p class="art-para">Following Delgaty and Lake <a href="#3" id="ref3">[3]</a>, Thirukkanesh and Ragel <a href="#48" id="ref48">[48]</a> and Bibi et al. <a href="#58" id="ref58">[58]</a> for a model to be physically acceptable, it must satisfy the following conditions:</p>
<p class="art-para">(i) Regularity of the metric potentials in the stellar interior and at the origin.</p>
<p class="art-para">(ii) The radial pressure should be positive, decreasing with the radial coordinate and vanishing at the centre of the fluid sphere.</p>
<p class="art-para">(iii) The energy density should be positive inside of the star and a decreasing function of the radial parameter. (iv) The radial pressure and density gradients <i>dp<sub>r</sub>/dr</i> &#8804; 0 and <i>d&#961;/dr</i> &#8804; 0 for 0 &#8804; <i>r</i> &#8804; R.</p>
<p class="art-para">(v) The causality condition requires that the radial speed of sound should be less than speed of light throughout the model, i.e. 0 &#8804; <i>dp<sub>r</sub>/dr</i> &#8804; 1.</p>
<p class="art-para">(vi) The radial pressure and the anisotropy is equal to zero at the centre of the fluid sphere &#916;(r=0) =0.</p>
<p class="art-para">(vii) The charged interior solution should be matched with the Reissner&#8211;Nordstr&#246;m exterior solution, for which the metric is given by:</p>
<div class="art-img" id="e028">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e028.gif" class="img-responsive center-block"/></div>
<p class="art-para">through the boundary r=R where M and Q are the total mass and the total charge of the star, respectively.</p>
<p class="art-para">The conditions (ii), (iii) and (iv) imply that the radial pressure and energy density must reach a maximum at the centre and decreasing towards the surface of the sphere.</p>
<p class="art-subhead">Physical Analysis</p>
<p class="art-para">We now present the analysis of the physical characteristics for the new model. The metric functions <i>e<sup>2&#955;</sup></i> and <i>e<sup>2v</sup></i> and should remain positive throughout the stellar interior and in the origin <i>e<sup>2&#955;(0)</sup>=1</i>,</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/ijpsr-113-te01.gif" class="img-responsive center-block"/></div>
<p class="art-para">We note in <i>r</i>=0 that (<i>e<sup>2&#955;(r)</sup>)<sup>'</sup><sub>r=0</sub> = (e<sup>2v(r)</sup><sup>'</sup><sub>r=0</sub></i>. This demonstrates that the gravitational potentials are regular at the centre <i>r</i>=0. The energy density and radial pressure are positive and well behaved inside the stellar interior. Also, we have the central density and pressure &#961;(0)=3<i>ac</i> and <i>p<sub>r</sub></i>(0) = 3<i>acA</i> - <i>B</i>/3<i>ac</i>. According to the expression of radial pressure, <i>p<sub>r</sub></i>(0) will be non-negative at the centre as it is satisfied by the condition 3<i>acA</i> &gt; <i>B</i>/3<i>ac</i>.</p>
<p class="art-para">In the surface of the star <i>r=R</i>, we have <i>p<sub>r</sub>(r=R)</i>=0 and</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/ijpsr-113-te02.gif" class="img-responsive center-block"/></div>
<p class="art-para">For a realistic star, it is expected that the gradient of energy density and radial pressure should be decreasing functions of the radial coordina <i>r</i>. In this model, for all 0&lt;<i>r</i>&lt;<i>R</i>, we obtain respectively:</p>
<div class="art-img" id="e029">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e029.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="e030">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e030.gif" class="img-responsive center-block"/></div>
<p class="art-para">and according to the equations <a href="#e029">(29)</a> and <a href="#e030">(30)</a>, the energy density and radial pressure decrease from the centre to the surface of the star.</p>
<p class="art-para">From <a href="#e017">eq. (17)</a>, we have:</p>
<div class="art-img" id="e031">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e031.gif" class="img-responsive center-block"/></div>
<p class="art-para">and the total mass of the star is:</p>
<div class="art-img" id="e032">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e032.gif" class="img-responsive center-block"/></div>
<p class="art-para">The causality condition demands that the radial sound speed defined as <i>&#957;<sup>2</sup><sub>sr</sub> = ap<sub>r</sub>/d&#961;</i> should not exceed the speed of light and it must be within the limit 0 &#8804; <i>&#957;<sup>2</sup><sub>sr</sub></i> &#8804; 1 in the interior of the star <a href="#3" id="ref3">[3]</a>. In this model, we have:</p>
<div class="art-img" id="e033">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e033.gif" class="img-responsive center-block"/></div>
<p class="art-para">For the <a href="#e033">eq. (33)</a> and with the transformations of Durgapal and Bannerji <a href="#56" id="ref56">[56]</a> we can impose the condition:</p>
<div class="art-img" id="e034">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e034.gif" class="img-responsive center-block"/></div>
<p class="art-para">On the boundary r=R, the solution must match the Reissner&#8211;Nordstr&#246;m exterior space&#8211;time as:</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/ijpsr-113-te03.gif" class="img-responsive center-block"/></div>
<p class="art-para">and therefore, the continuity of <i>e<sup>v</sup></i> and <i>e<sup>&#955;</sup></i> across the boundary <i>r=R</i> is</p>
<div class="art-img" id="e035">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e035.gif" class="img-responsive center-block"/></div>
<p class="art-para">Then for the matching conditions, we obtain:</p>
<div class="art-img" id="e036">
<img src="<?php echo $imgpath;?>images/ijpsr-113-e036.gif" class="img-responsive center-block"/></div>
<p class="art-para">The figures 1-8 represent the graphs of <i>pr, &#961;, M(x), &#963;<sup>2</sup>, &#916;,v<sup>2</sup>sr, dp<sub>r</sub>/dr</i> and <i>d&#961;/dr</i> respectively with <i>a=0.09, b=0.015, A=0.066, B=0.0000054, c=1</i> and stellar radius of <i>r=1.46 km</i>.</p>
<div class="art-img" id="f001">
<img src="<?php echo $imgpath;?>images/ijpsr-113-f001.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="f002">
<img src="<?php echo $imgpath;?>images/ijpsr-113-f002.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="f003">
<img src="<?php echo $imgpath;?>images/ijpsr-113-f003.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="f004">
<img src="<?php echo $imgpath;?>images/ijpsr-113-f004.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="f005">
<img src="<?php echo $imgpath;?>images/ijpsr-113-f005.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="f006">
<img src="<?php echo $imgpath;?>images/ijpsr-113-f006.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="f007">
<img src="<?php echo $imgpath;?>images/ijpsr-113-f007.gif" class="img-responsive center-block"/></div><br/>
<div class="art-img" id="f008">
<img src="<?php echo $imgpath;?>images/ijpsr-113-f008.gif" class="img-responsive center-block"/></div>
<p class="art-para">The <a href="#f001">figure 1</a> shows that the radial pressure is continuous, finite, decreases radially outward and vanishes at the boundary. In <a href="#f002">figure 2</a>, we note that the energy density <i>&#961;</i> also is finite, continuous and monotonically decreasing function. In <a href="#f003">figure 3</a>, it is observed that the mass function is regular, strictly increasing and well behaved. <a href="#f004">Figure 4</a> shows that the charge density is regular at the centre, non-negative and grows with the radial parameter. In <a href="#f005">figure 5</a>, the anisotropy factor &#916; vanishes at <i>r=0</i>, it monotonically increases and is continuous in the stellar interior reaching a maximum on the surface of the star. In <a href="#f006">figure 6</a>, we note that the <i>&#957;<sup>2</sup><sub>sr</sub> = dp<sub>r</sub>/d&#961;</i> is within the desired range 0 &#8804; <i>&#957;<sup>2</sup><sub>sr</sub></i> &#8804; 1, which is a physical requirement for the construction of a realistic star <a href="#3" id="ref3">[3]</a>. The <a href="#f007">figures 7</a> and <a href="#f008">8</a> respectively show that the gradients of radial pressure  <i>dp<sub>r</sub>/dr</i> and energy density <i>d&#961;/dr</i> are decreasing throughout the star.</p>
<p class="art-subhead">Conclusion</p>
<p class="art-para">In this paper, we have solved Einstein-Maxwell field equations with a particular form of gravitational potential and a modified Chaplygin equation of state and presented a new class of solution that satisfies the physical requirements of a anisotropic charged stellar model. The radial pressure, energy density, anisotropy, mass function, charge density and all the metric coefficients behave well inside the stellar interior and are free of singularities.</p>
<p class="art-para">The new obtained solution is expressed in terms of elementary functions which can be useful in the description of compact strange star candidates and the physical study of some kinds of white dwarfs with masses ~0.06 <i>M<sub>sol</sub></i> and <i>r=1.5 Km</i>.</p>
<p class="art-para">The values of parameters <i>A</i> and <i>B</i> have been chosen in order to maintain the causality condition and the regularity of metric potentials inside the radius of the star. With <i>E<sup>2</sup>=B=0</i>, the model of Lobo for dark energy stars <a href="#59" id="ref59">[59]</a> can be recovered as a particular case of this work and choosing E2&#8800;0, <i>B</i>=0, we can obtain new models with linear equation of state within the framework of MIT-Bag model and generate families of exact solutions for the Einstein-Maxwell field equations for relativistic compact objects and configurations with anisotropic matter distribution. It is to be expected that the stellar models obtained in this research can be used in the description of the internal structure of strange quark stars. The arbitrary constants A, A* B, C, D, E must be well defined in order to reproduce numerical data consistent with super-dense starmodels like neutron star and pulsars.</p>
<p class="art-subhead" id="references">References</p>
<ol>
<li class="ref"><div id="1">Kuhfitting PKF. <a href="https://arxiv.org/abs/1001.0381" target="_blank">Some remarks on exact wormhole solutions</a>. <i>Adv Stud Theor Phys</i>. 2011; 5: 365-367.&nbsp;&nbsp;&nbsp;<a href="#ref1"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="2">Bicak J. Einstein equations: exact solutions. <i>Encyclopaedia of Mathematical Physics</i>. 2006; 2: 165-173.&nbsp;&nbsp;&nbsp;<a href="#ref2"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="3">Delgaty MSR, Lake K. <a href="https://www.sciencedirect.com/science/article/abs/pii/S0010465598001301" target="_blank">Physical Acceptability of Isolated, Static, Spherically Symmetric, Perfect Fluid Solutions of Einstein&#700;s Equations</a>. <i>Comput Phys Commun</i>. 1998; 115(2-3): 395-415. doi: 10.1016/S0010-4655(98)00130-1&nbsp;&nbsp;&nbsp;<a href="#ref3"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="4">Joshi PS. <a href="https://global.oup.com/academic/product/global-aspects-in-gravitation-and-cosmology-9780198500797?cc=in&lang=en&" target="_blank">Global Aspects in Gravitation and Cosmology</a>. Clarendon Press, Oxford. 1993.&nbsp;&nbsp;&nbsp;<a href="#ref4"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="5">Schwarzschild K. <a href="https://arxiv.org/abs/physics/9912033" target="_blank">About the gravitational field of a ball made of incompressible liquid according to Einstein&#700;s theory</a>. <i>Math Phys Tech</i>. 1916; 424-434.&nbsp;&nbsp;&nbsp;<a href="#ref5"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="6">Tolman RC. <a href="https://journals.aps.org/pr/abstract/10.1103/PhysRev.55.364" target="_blank">Static Solutions of Einstein&#700;s Field Equations for Spheres of Fluid</a>. <i>Phys Rev</i>. 1939; 55(4): 364-373. doi: 10.1103/PhysRev.55.364&nbsp;&nbsp;&nbsp;<a href="#ref6"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="7">Oppenheimer JR, Volkoff G. <a href="https://journals.aps.org/pr/abstract/10.1103/PhysRev.55.374" target="_blank">On Massive Neutron Cores</a>. <i>Phys Rev</i>. 1939; 55(4): 374-381. doi: 10.1103/PhysRev.55.374&nbsp;&nbsp;&nbsp;<a href="#ref7"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="8">Chandrasekahr S. <a href="https://ui.adsabs.harvard.edu/abs/1931ApJ....74...81C/abstract" target="_blank">The Maximum mass of ideal white dwarfs</a>. <i>Astrophys J</i>. 1931; 74: 81-82. doi: 10.1086/143324&nbsp;&nbsp;&nbsp;<a href="#ref8"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="9">Baade W, Zwicky F. <a href="https://www.pnas.org/content/20/5/254" target="_blank">On Super-novae</a>. <i>Proc Nat Acad Sci U S A</i>. 1934; 20(5): 254-259. doi: 10.1073/pnas.20.5.254&nbsp;&nbsp;&nbsp;<a href="#ref9"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="10">Beckenstein JD. <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.4.2185" target="_blank">Hydrostatic equilibrium and gravitational collapse of relativistic charged fluid balls</a>. <i>Phys Rev D</i>. 1971; 4(8): 2185. doi: 10.1103/PhysRevD.4.2185&nbsp;&nbsp;&nbsp;<a href="#ref10"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="11">Komathiraj K, Maharaj SD. <a href="https://www.worldscientific.com/doi/abs/10.1142/S0218271807011103" target="_blank">Analytical models for quark stars</a>. <i>Int J Mod Phys</i>. 2007; 16(11): 1803-1811. doi: 10.1142/S0218271807011103&nbsp;&nbsp;&nbsp;<a href="#ref11"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="12">Ivanov BV. <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.104001javascript:void(0)" target="_blank">Static charged perfect fluid spheres in general relativity</a>. <i>Phys Rev</i>. 2002; 65(10): 104011. doi: 10.1103/PhysRevD.65.104001&nbsp;&nbsp;&nbsp;<a href="#ref12"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="13">Malaver M, Kasmaei HD. <a href="http://ijm2c.iauctb.ac.ir/article_674191.html" target="_blank">Relativistic stellar models with quadratic equation of state</a>. <i>International Journal of Mathematical Modelling & Computations</i>. 2020; 10(2): 111-124. doi: 10.1142/S0218271813500740&nbsp;&nbsp;&nbsp;<a href="#ref13"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="14">Bowers RL, Liang EPT. <a href="https://inspirehep.net/literature/1624581" target="_blank">Anisotropic Spheres in General Relativity</a>. <i>Astrophys J</i>. 1974; 188: 657-665. doi: 10.1086/152760&nbsp;&nbsp;&nbsp;<a href="#ref14"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="15">Gokhroo MK, Mehra AL. <a href="https://link.springer.com/article/10.1007/BF02088210" target="_blank">Anisotropic Spheres with Variable Energy Density in General Relativity</a>. <i>Gen Relat Grav</i>. 1994; 26(1): 75-84. doi: 10.1007/BF02088210&nbsp;&nbsp;&nbsp;<a href="#ref15"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="16">Esculpi M, Malaver M, Aloma E. <a href="https://ui.adsabs.harvard.edu/abs/2007GReGr..39..633E/abstract" target="_blank">A Comparative Analysis of the Adiabatic Stability of Anisotropic Spherically Symmetric solutions in General Relativity</a>. <i>Gen Relat Grav</i>. 2007; 39(5): 633-652. doi: 10.1007/s10714-007-0409-3&nbsp;&nbsp;&nbsp;<a href="#ref16"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="17">Malaver M. <a href="http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.psjd-dd16364d-d48d-47c4-aa25-729fb6c7ef16" target="_blank">Generalized Nonsingular Model for Compact Stars Electrically Charged</a>. <i>World Scientific News</i>. 2018; 92(2): 327-339.&nbsp;&nbsp;&nbsp;<a href="#ref17"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="18">Malaver M. <a href="http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.psjd-4761d4ef-d423-4e7d-99d6-27ffb5898ed4" target="_blank">Some new models of anisotropic compact stars with quadratic equation of state</a>. <i>World Scientific News</i>. 2018; 109: 180-194.&nbsp;&nbsp;&nbsp;<a href="#ref18"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="19">Chan R, Herrera L, Santos NO. Dynamical instability in the collapse of anisotropic matter. Class. <i>Quantum Grav</i>. 1992; 9(10): L133.&nbsp;&nbsp;&nbsp;<a href="#ref19"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="20">Malaver M. <a href="http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=245&doi=10.11648/j.ijssam.20170205.13" target="_blank">New Mathematical Models of Compact Stars with Charge Distributions</a>. <i>International Journal of Systems Science and Applied Mathematics</i>. 2017; 2(5): 93-98.&nbsp;&nbsp;&nbsp;<a href="#ref20"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="21">Cosenza M, Herrera L, Esculpi M, Witten L. <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.25.2527" target="_blank">Evolution of radiating anisotropic spheres in general relativity</a>. <i>Phys Rev D</i>. 1982; 25(10): 2527-2535. doi: 10.1103/PhysRevD.25.2527&nbsp;&nbsp;&nbsp;<a href="#ref21"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="22">Herrera L. <a href="https://www.sciencedirect.com/science/article/abs/pii/037596019290036L" target="_blank">Cracking of self-gravitating compact objects</a>. <i>Phys Lett A</i>. 1992; 165(3): 206-210. doi: 10.1016/0375-9601(92)90036-L&nbsp;&nbsp;&nbsp;<a href="#ref22"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="23">Herrera L, Ponce de Leon J. <a href="https://aip.scitation.org/doi/abs/10.1063/1.526567?journalCode=jmp" target="_blank">Perfect fluid spheres admitting a oneparameter group of conformal motions</a>. <i>J Math Phys</i>. 1985; 26: 778. doi: 10.1063/1.526567&nbsp;&nbsp;&nbsp;<a href="#ref23"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="24">Herrera L, Nu&#241;ez L. <a href="https://ui.adsabs.harvard.edu/abs/1989ApJ...339..339H/abstract" target="_blank">Modeling &#8216;hydrodynamic phase transitions&#8217; in a radiating spherically symmetric distribution of matter</a>. <i>Astrophys J</i>. 1989; 339(1): 339-353. doi: 10.1086/167300&nbsp;&nbsp;&nbsp;<a href="#ref24"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="25">Herrera L, Ruggeri GJ, Witten L. <a href="https://ui.adsabs.harvard.edu/abs/1979ApJ...234.1094H/abstract" target="_blank">Adiabatic Contraction of Anisotropic Spheres in General Relativity</a>. <i>Astrophys J</i>. 1979; 234: 1094-1099. doi: 10.1086/157592&nbsp;&nbsp;&nbsp;<a href="#ref25"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="26">Herrera L, Jimenez L, Leal L, Ponce de Leon J, Esculpi M, Galina V. <a href="https://aip.scitation.org/doi/10.1063/1.526075" target="_blank">Anisotropic fluids and conformal motions in general relativity</a>. <i>J Math Phys</i>. 1984; 25(11): 3274. doi: 10.1063/1.526075&nbsp;&nbsp;&nbsp;<a href="#ref26"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="27">Sokolov AI. Phase transitions in a super fluid neutron liquid. <i>Sov Phys JETP</i>. 1980; 52(4): 575-576.&nbsp;&nbsp;&nbsp;<a href="#ref27"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="28">Usov VV. <a href="https://ui.adsabs.harvard.edu/abs/2004PhRvD..70f7301U/abstract" target="_blank">Electric fields at the quark surface of strange stars in the colorflavor locked phase</a>. <i>Phys Rev D</i>. 2004; 70(6): 067301. doi: 10.1103/PhysRevD.70.067301&nbsp;&nbsp;&nbsp;<a href="#ref28"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="29">Bhar P, Murad MH, Pant N. <a href="https://ui.adsabs.harvard.edu/abs/2015Ap%26SS.359...13B/abstract" target="_blank">Relativistic anisotropic stellar models with Tolman VII spacetime</a>. <i>Astrophys Space Sci</i>. 2015; 359: 13. doi: 10.1007/s10509-015-2462-9&nbsp;&nbsp;&nbsp;<a href="#ref29"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="30">Thirukkanesh S, Maharaj SD. <a href="https://inspirehep.net/literature/800208" target="_blank">Charged anisotropic matter with a linear equation of state</a>. <i>Class Quant Grav</i>. 2008; 25(23): 235001. doi: 10.1088/0264-9381/25/23/235001&nbsp;&nbsp;&nbsp;<a href="#ref30"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="31">Maharaj SD, Sunzu JM, Ray S. <a href="https://link.springer.com/article/10.1140/epjp/i2014-14003-9" target="_blank">Some simple models for quark stars</a>. <i>Eur Phys J Plus</i>. 2014; 129: 3. doi: 10.1140/epjp/i2014-14003-9&nbsp;&nbsp;&nbsp;<a href="#ref31"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="32">Thirukkanesh S, Ragel FC. <a href="https://link.springer.com/article/10.1007/s12043-013-0582-8" target="_blank">A class of exact strange quark star model</a>. <i>Pramana - J Phys</i>. 2013; 81(2): 275-286. doi: 10.1007/s12043-013-0582-8&nbsp;&nbsp;&nbsp;<a href="#ref32"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="33">Thirukkanesh S, Ragel FC. <a href="https://link.springer.com/article/10.1007/s10509-014-1960-5" target="_blank">Strange star model with Tolmann IV type potential</a>. <i>Astrophys Space Sci</i>. 2014; 352(2): 743-749. doi: 10.1007/s10509-014-1960-5&nbsp;&nbsp;&nbsp;<a href="#ref33"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="34">Feroze T, Siddiqui A. <a href="https://link.springer.com/article/10.1007/s10714-010-1121-2" target="_blank">Charged anisotropic matter with quadratic equation of state</a>. <i>Gen Rel Grav</i>. 2011; 43: 1025-1035. doi: 10.1007/s10714-010-1121-2&nbsp;&nbsp;&nbsp;<a href="#ref34"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="35">Feroze T, Siddiqui A. <a href="https://link.springer.com/article/10.3938%2Fjkps.65.944" target="_blank">Some Exact Solutions of the Einstein-Maxwell Equations with a Quadratic Equation of State</a>. <i>J Korean Phys Soc</i>. 2014; 65(6): 944-947. doi: 10.3938/jkps.65.944&nbsp;&nbsp;&nbsp;<a href="#ref35"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="36">Sunzu JM, Maharaj SD, Ray S. <a href="https://link.springer.com/article/10.1007/s10509-014-2131-4" target="_blank">Quark star model with charged anisotropic matter</a>. <i>Astrophys Space Sci</i>. 2014; 354: 517-524. doi: 10.1007/s10509-014-2131-4&nbsp;&nbsp;&nbsp;<a href="#ref36"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="37">Pant N, Pradhan N, Malaver M. <a href="http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=302&doi=10.11648/j.ijass.s.2015030101.11" target="_blank">Anisotropic fluid star model in isotropic coordinates</a>. <i>International Journal of Astrophysics and Space Science</i>. 2015; 3(1): 1-5. doi: 10.11648/j.ijass.s.2015030101.11&nbsp;&nbsp;&nbsp;<a href="#ref37"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="38">Malaver M. <a href="https://www.researchgate.net/publication/260186984_Strange_Quark_Star_Model_with_Quadratic_Equation_of_State" target="_blank">Strange Quark Star Model with Quadratic Equation of State</a>. <i>Frontiers of Mathematics and Its Applications</i>. 2014; 1(1): 9-15.&nbsp;&nbsp;&nbsp;<a href="#ref38"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="39">Malaver M. <a href="https://www.researchgate.net/publication/289526148_New_Models_for_Charged_Anisotropic_Stars_with_Modified_Tolman_IV_Spacetime" target="_blank">Charged anisotropic models in a modified Tolman IV space time</a>. <i>World Scientific News</i>. 2018; 101: 31-43.&nbsp;&nbsp;&nbsp;<a href="#ref39"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="40">Malaver M. <a href="http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.psjd-80be222c-4dd5-437b-960c-bddec57a298b" target="_blank">Charged stellar model with a prescribed form of metric function y(x) in a Tolman VII space time</a>. <i>World Scientific News</i>. 2018; 108: 41-52.&nbsp;&nbsp;&nbsp;<a href="#ref40"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="41">Malaver M. <a href="http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.psjd-e5c97e74-24f0-4786-aa95-21542e8703b1" target="_blank">Classes of relativistic stars with quadratic equation of state</a>. <i>World Scientific News</i>. 2016; 57: 70-80.&nbsp;&nbsp;&nbsp;<a href="#ref41"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="42">Sunzu J, Danford P. <a href="https://ui.adsabs.harvard.edu/abs/2017Prama..89...44S/abstract" target="_blank">New exact models for anisotropic matter with electric field</a>. <i>Pramana &#8211; J Phys</i>. 2017; 89(3): 44. doi: 10.1007/s12043-017-1442-8&nbsp;&nbsp;&nbsp;<a href="#ref42"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="43">Komathiraj K, Maharaj SD. <a href="https://arxiv.org/abs/0808.1998" target="_blank">Classes of exact Einstein-Maxwell solutions</a>. <i>Gen Rel Grav</i>. 2008; 39(12): 2079-2093. doi: 10.1007/s10714-007-0510-7&nbsp;&nbsp;&nbsp;<a href="#ref43"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="44">Malaver M. <a href="https://www.researchgate.net/publication/256846343_Analisis_comparativo_de_algunos_modelos_analiticos_para_estrellas_de_quarks" target="_blank">An&#225;lisis comparativo de algunos modelos anal&#237;ticos para estrellas de quarks</a>. <i>Revista Integraci&#243;n</i>. 2009; 27(2): 125-133.&nbsp;&nbsp;&nbsp;<a href="#ref44"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="45">Bombaci I. <a href="https://journals.aps.org/prc/abstract/10.1103/PhysRevC.55.1587" target="_blank">Observational evidence for strange matter in compact objects from the x-ray burster 4U 1820-30</a>. <i>Phys Rev</i>. 1997; 55(3): 1587-1590. doi: 10.1103/PhysRevC.55.1587&nbsp;&nbsp;&nbsp;<a href="#ref45"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="46">Dey M, Bombaci I, Dey J, Ray S, Samanta BC. <a href="https://www.sciencedirect.com/science/article/abs/pii/S0370269398009356" target="_blank">Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential</a>. <i>Phys Lett B</i>. 1998; 438(1): 123-128.&nbsp;&nbsp;&nbsp;<a href="#ref46"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="47">Takisa PM, Maharaj SD. <a href="https://link.springer.com/article/10.1007/s10714-013-1570-5" target="_blank">Some charged polytropic models</a>. <i>Gen Rel Grav</i>. 2013; 45: 1951-1969. doi: 10.1007/s10714-013-1570-5&nbsp;&nbsp;&nbsp;<a href="#ref47"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="48">Thirukkanesh S, Ragel FC. <a href="https://link.springer.com/article/10.1007/s12043-012-0268-7" target="_blank">Exact anisotropic sphere with polytropic equation of state</a>. <i>Pramana-J Phys</i>. 2012; 78(5): 687-696. doi: 10.1007/s12043-012-0268-7&nbsp;&nbsp;&nbsp;<a href="#ref48"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="49">Malaver M. <a href="https://www.researchgate.net/publication/259786071_Analytical_Model_for_Charged_Polytropic_Stars_with_Van_Der_Waals_Modified_Equation_of_State" target="_blank">Analytical model for charged polytropic stars with Van der Waals Modified Equation of State</a>. <i>American Journal of Astronomy and Astrophysics</i>. 2013; 1(4): 37-42. doi: 10.11648/j.ajaa.20130104.11&nbsp;&nbsp;&nbsp;<a href="#ref49"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="50">Bhar P, Murad MH. <a href="https://ui.adsabs.harvard.edu/abs/2016Ap%26SS.361..334B/abstract" target="_blank">Relativistic compact anisotropic charged stellar models with Chaplygin equation of state</a>. <i>Astrophys Space Sci</i>. 2016; 361(10): 334. doi: 10.1007/s10509-016-2923-9&nbsp;&nbsp;&nbsp;<a href="#ref50"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="51">Tello-Ortiz F, Malaver M, Rinc&#243;n A, Gomez-Leyton Y. <a href="https://ui.adsabs.harvard.edu/abs/2020EPJC...80..371T/abstract" target="_blank">Relativistic Anisotropic Fluid Spheres Satisfying a Non-Linear Equation of State</a>. <i>Eur Phys J</i>. 2020; 80(5): 371. doi: 10.1140/epjc/s10052-020-7956-0&nbsp;&nbsp;&nbsp;<a href="#ref51"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="52">Caldwell RR, Dave R, Steinhardt PJ. <a href="https://inspirehep.net/literature/447100" target="_blank">Cosmological Imprint of an Energy Component with General Equation of State</a>. <i> Phys Rev Lett</i>. 1998; 80: 1582-1585. doi: 10.1103/PhysRevLett.80.1582&nbsp;&nbsp;&nbsp;<a href="#ref52"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="53">Xu L, Lu J, Wang Y. <a href="https://ui.adsabs.harvard.edu/abs/2012EPJC...72.1883X/abstract" target="_blank">Revisiting generalized Chaplygin gas as a unified dark matter and dark energy model</a>. <i>Eur Phys J C</i>. 2012; 72: 1883. doi: 10.1140/epjc/s10052-012-1883-7&nbsp;&nbsp;&nbsp;<a href="#ref53"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="54">Pourhassan B. <a href="https://www.worldscientific.com/doi/10.1142/S0218271813500612" target="_blank">Viscous modified cosmic chaplygin gas cosmology</a>. <i>Int J Modern Phys D</i>. 2013; 22(9): 1350061. doi: 10.1142/S0218271813500612&nbsp;&nbsp;&nbsp;<a href="#ref54"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="55">Bernardini AE, Bertolami O. <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.123011" target="_blank">Stability of mass varying particle lumps</a>. <i>Phys Rev D</i>. 2009; 80: 123011. doi: 10.1103/PhysRevD.80.123011&nbsp;&nbsp;&nbsp;<a href="#ref55"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="56">Durgapal MC, Bannerji R. <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.27.328" target="_blank">New analytical stellar model in general relativity</a>. <i>Phys Rev D</i>. 1983; 27: 328-331. doi: 10.1103/PhysRevD.27.328&nbsp;&nbsp;&nbsp;<a href="#ref56"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="57">Ngubelanga SA, Maharaj SD, Ray S. <a href="https://ui.adsabs.harvard.edu/abs/2015Ap%26SS.357...40N/abstract" target="_blank">Compact stars with linear equation of state in isotropic coordinates</a>. <i>Astrophys Space Sci</i>. 2015; 357(1): 40. doi: 10.1007/s10509-015-2280-0&nbsp;&nbsp;&nbsp;<a href="#ref57"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="58">Bibi R, Feroze T, Siddiqui A. <a href="https://inspirehep.net/literature/1485415" target="_blank">Solution of the Einstein-Maxwell Equations with Anisotropic Negative Pressure as a Potential Model of a Dark Energy Star</a>. <i>Can J Phys</i>. 2016; 94(8): 758-762. doi: 10.1139/cjp-2016-0069&nbsp;&nbsp;&nbsp;<a href="#ref58"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
<li class="ref"><div id="59">Lobo FSN. <a href="https://arxiv.org/abs/gr-qc/0508115" target="_blank">Stable dark energy stars</a>. <i>Class Quant Grav</i>. 2006; 23: 1525-1541. doi: 10.1088/0264-9381/23/5/006&nbsp;&nbsp;&nbsp;<a href="#ref59"><i class="fa fa-level-up" aria-hidden="true"></i></a></div></li>
</ul>
</div>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
</div><!--end of row-->
</div><!--end of container-body-->
</div><!--end of content-area-->
<?php include 'includes/jrnfooter.php';?>

Youez - 2016 - github.com/yon3zu
LinuXploit