���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 132.148.112.237  /  Your IP : 216.73.216.191
Web Server : Apache
System : Linux p3plmcpnl497166.prod.phx3.secureserver.net 4.18.0-553.54.1.lve.el8.x86_64 #1 SMP Wed Jun 4 13:01:13 UTC 2025 x86_64
User : m483e053zf9r ( 10082050)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /home/m483e053zf9r/public_html/madridge.org/journals-admin/uploads/fulltext/IJPR/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /home/m483e053zf9r/public_html/madridge.org/journals-admin/uploads/fulltext/IJPR/ijpr-1000131.php
<?php
$extpath="../";
include 'includes/jrnheader.php';
include 'includes/jrnleft-panel.php';
//$imgpath=""; ?>
<div class="col-md-9 padding-top-15">
<section class="post">
<div class="row">
<div class="col-md-12">
<div class="articledetails article-header clearfix">
<p class="art-type">Research Article</p>
<p class="art-title">Testing and Prediction of Flare Emissions Created during
Transient Flare Ignition</p>
<p class="art-author"><?php $authors="Joseph D. Smith<sup>1*</sup>, Hayder A. Al-Hameedi<sup>1</sup>, Robert Jackson<sup>2</sup> and Ahti Suo-Antilla<sup>2</sup>
"; echo (stristr($authors,$coauthor))?str_replace($coauthor,"<a href='".$extpath."authors/".$courl."' target='_blank'>".$coauthor."</a>",$authors):$authors; ?></p>
<p class="art-affl">
<sup>1</sup>Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, MO, 65409, USA<br>
<sup>2</sup>Elevated Analytics, Inc., Tulsa, OK, 74015, USA
</p>
<p class="art-aff"><b>*Corresponding author: <?php $corresponding_author="Joseph D. Smith"; echo ($coauthor!="" && $coauthor==$corresponding_author)?"<a href='".$extpath."authors/".$courl."' target='_blank'>".$coauthor."</a>":$corresponding_author;?></b>, Chemical and Biochemical Engineering
Department, Missouri University of Science and
Technology, Rolla, MO, 65409, USA, E-mail: <a href="mailto:smithjose@mst.edu">smithjose@mst.edu</a>
</p>
<p class="art-aff"><b>Received:</b> May 2, 2018
<b>Accepted:</b> August 23, 2018
<b>Published:</b> August 28, 2018</p>
<p class="art-aff"><b>Citation: </b>Smith JD, Al-Hameedi HA, Jackson R, Suo-Antilla A. Testing and Prediction of Flare
Emissions Created during Transient Flare
Ignition. <i>Int J Petrochem Res.</i> 2018; 2(2): 175-181. doi: <a href="https://doi.org/10.18689/ijpr-1000131">10.18689/ijpr-1000131</a>
</p>
 <p class="art-aff"><b>Copyright:</b> &copy; 2018 The Author(s). This
work is licensed under a Creative Commons
Attribution 4.0 International License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original work is properly cited.</p>
<p><a href="<?php echo $extpath;?><?php echo $jres['journal_link'];?>/ijpr-1000131.pdf" class="btn btn-danger pull-right" target="_blank">Download PDF</a></p>
</div>
<div class="articlecontent">
<p class="art-subhead">Abstract</p>
<p class="art-para">Computational fluid dynamics (CFD) was used to simulate multi tip flare system with
different operating conditions during ignition time. Single tip and three tips flare
systems were simulated and verified against experimental test to get CFD combustion
model that required for multi tip flare system. Natural gas, propane, propylene, ethylene
and xylene were used as flaring gases in simulated tests of single and three tips flare
under an open environment that carried out at the Zeeco facility in Tulsa, OK. This study
aimed to predict the soot formation and heat radiation from full multi tip flare field by
using CFD modeling with verified combustion model and large eddies simulation (LES) turbulence model with a reduced four step combustion mechanism. The results showed
that the multi tip flare system performance can be predicted by using C3d tool.</p>
<p class="art-para"><b>Keywords:</b> CFD, Multi-Tip Flare, Radiation, Emissions, Combustion, Flare Performance, Flare Regulations</p>
<p class="art-subhead">Introduction</p>
<p class="art-para">Flares are the most important safety equipment during upset or sudden shutdown
events in the chemical and petrochemical plants. They are combusting relief and
unusable flammable gases in an open atmosphere to prevent tragic events in the whole
system. Also, they used to prevent the atmospheric pollution with different contaminants
by converting them to CO<sub>2</sub> and water. Many steps have been taken by different countries
towards reducing the amount of gas flaring around the world. However, the global
trend of gas flaring is increased each year due to increasing of global oil and gas
production where the estimated amount of gas flared in 2012 was 145 billion cubic
meters and in 2016 was 149 billion cubic meters <a href="#1">[1]</a> <a href="#2">[2]</a>. Additionally, regulations for
flaring process operation and design such EPA 40 CFR 60.18, and API 521have been
established to ensure high flare performance<a href="#3">[3]</a> <a href="#4">[4]</a>. However, in the flaring process, ignition can be delayed for unlit flares or extinguished pilot flame flares and hence
unburned hydrocarbons and black carbon (BC) release to the atmosphere.</p>
<p class="art-para">During the flare ignition process, the hydrocarbon gas is fed through a stack into
the atmosphere where it is ignited using an external energy source. This phenomenon
is clearly seen by the incomplete combustion that occurs moments after flare ignition
where BC emissions form during the flare ignition process. This transient is caused by
the inefficient mixing of flare gas and air during first 10-30 seconds of flare operation. Therefore, large amount of BC release to the ambient air. On the other hand, heat is
released by combustion reaction of vent gas with oxygen during flaring process.</p>
<p class="art-para">Black carbon has a negative influence on the climate and human health. For example, when black carbon deposits on reflective object surfaces, it could darken these surfaces
and cause a decrease in albedo (percentage of reflected solar radiation from the object to space), e.g. snow, ice, and white surfaces. By absorbing
solar radiation, BC causes melting of snow and ice. Also, BC
can influence the cloud dynamics and properties by absorption
radiation from the atmosphere. Moreover, BC can affect the
human health by causing respiratory illnesses, cancer, and
congenital defect <a href="#5">[5]</a>. On the other hand, part of the heat that
release from combustion reaction radiated to the surrounding
facilities and objects. Therefore, flares should be far enough
or have suitable distance from other objects to avoid the heat
radiation effect on the workers and other equipment. Consequently, estimation of heat radiation rate from flaring
practice is essential in designing task of flares.</p>
<p class="art-para">Many studies on measuring and estimation of BC emission
from flaring process have been carried out <a href="#6">[6]</a> <a href="#7">[7]</a> <a href="#8">[8]</a> <a href="#9">[9]</a> <a href="#10">[10]</a>
<a href="#11">[11]</a> <a href="#12">[12]</a>.Most of these studies reported that the BC emission
is increasing with decreasing the flare combustion efficiency. McEwen J. et al. <a href="#8">[8]</a> measured the quantitative emission of
soot in lab scale flares of 12.7-76.2 mm inner diameters with
jet velocity 0.1-2.2 m/sec, four and six component methanebased
fuel mixtures. They found an empirical relationship
between heating value (HV, MJ/m<sup>3</sup>)of flare vent gas and the
soot emission factor, SEF (kg of soot / 10<sup>3</sup> m<sup>3</sup> fuel), as shown
in equation (1).</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq1.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Wang et al. <a href="#12">[12]</a> suggested a new reaction mechanism
with 50 components to predict soot emission by predicting
important soot precursor species such as C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>6</sub>H<sub>6</sub>. They showed that CFD simulation of an air assisted flare with
this mechanism better predicted soot emission from the flare. </p>
<p class="art-para">Several investigations have been done to study the
thermal radiation emissions <a href="#13">[13]</a> <a href="#14">[14]</a><a href="#15">[15]</a><a href="#16">[16]</a><a href="#17">[17]</a><a href="#18">[18]</a> from
flares. Smith, et al. <a href="#16">[16]</a> evaluated the effect of the flaring
operation of multiple flares on the neighboring flaring system
fields at the maximum flow rates by using CFD technique. Smith, et al. <a href="#17">[17]</a> studies the effects of the flare plume from
multi point ground flares on surrounding facilities and workers
at the maximum flow rates using LES based CFD simulations. Recently, a new modeling approach to predict heat radiation
from gas flaring has been introduced by Miller <a href="#18">[18]</a>. However, this model has been developed for H<sub>2</sub> and syngas flaring.</p>
<p class="art-para">Analytical quantification of an elevated multi-point flare (MPF) operating at full-rate is very difficult. These difficulties are
due to the large size of the combined flame from multiple burner
tips operating in the multi-point flare and the associated high
radiation flux from a flare operating high above the ground. Due
to the large plume emitted from a MTF with the associated high
heat radiation, emission measurements are also very difficult to
perform. The API 521 flaring guidelines includes design criteria
for a flaring system but focus on utility flares and assisted flares
with little consideration for MPF flares. Therefore, additional
performance metrics are needed for MTF design and performance
<a href="#13">[13]</a>.</p>
<p class="art-para">To the author's knowledge, none of these studies that
mentioned above regarding soot emission estimated BC
emissions from flares during the flare ignition process. Therefore, the objective of this study was to estimate the amount of BC released during the ignition time of flare system
annually. Also, the thermal radiation to the surrounding, and
the formed soot estimation for MTF systems have been
simulated using CFD technique.</p>
<p class="art-subhead">Materials and Methods</p>
<p class="art-para"><b>Testing</b><br/>
One set up for the experimental tests has been used in
this study to measure soot emission and heat radiation
emissions from single tip and three tips flare. A view of
experimental rig is shown in Figure 1. The purpose of these
experiments was to provide the required data for validation
with the CFD combustion model that is needed later for the
simulation of full multi tips flare system.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure1.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Different flare burner tips are used in flaring system such as
pipe burner and multi arm burner to handle large amount of
waste gases especially in the oil and gas production field. The
advantages of using multi-arm burner are to improve the local
turbulence and mixing of flaring gas with air. Also, these
burners minimize the thermal radiation levels because of its
resistance to wind deviation. They are fabricated from 310
stainless steel casting materials via investment casting to
increase the operating life of the burner. To get a safe and
reliable operation of these burners, they are tested against
pressure in the manufacturing factory. A view of multi arm
burner is shown in Figure 2. The single flare tip was consisted
of main horizontal tube join to another vertical tube with one
multi arm burner while three tip flare was included one main
horizontal tube connected to three vertical tubes with one
multi arm burner at the end of each vertical tube as shown in
Figure 2.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure2.PNG" class="img-responsive center-block"/></div>
<p class="art-para">The experimental tests were carried out at Zeeco Inc. facility
in Tulsa, OK, using wide range of gases such as methane, propane, propylene ethylene and xylene. Thermal radiation
measurements were performed in two different locations for the
single and there tip flares; the first one lies 5 meters far from the
flare tip and the second location lies 20 meters from the flare tip. Two circumstances for cross wind velocity have been considered
where one of those velocities is zero. The other velocity for the
cross wind was chosen to be 3 meters per hour.</p>
<p class="art-subhead">Results and Testing</p>
<p class="art-para">The effect of the cross-wind velocity for single tip flare tip with
propane as a vent gas is presented in Figure 3. When there was no
wind, then the shape of the flame above the flare tip was elongated
and similar to the pencil shape. As shown in Figure 3, the wind
speed effects flame shape and causes the flame to be bent. Also, the
wind speed reduce the flame temperture and hence the thermal
radiation decreases. When the cross wind velocity 8 to 10 mile per
hour (mph), the flame titled towards downside of wind with an
angle of 8<sup>o</sup> and the height of flame was 10.5 meters where the
height reduction around 30 percent as shown in Figure 3</p>
<p class="art-para">The test setup for heat radiation from single tip is displayed in
Figure 4. For thermal radiation measurements a 6-12 mph wind
speed blowing mostly from south to the north with an angle of 169<sup>o</sup>
were implanted during single tip test with propylene fuel as shown
in Figure 4. These measurements were taken in three different
positions. The distances of these positions were 75 ft, 100 ft, and 150
ft far from flare flame as shown in Figure 4.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure3.PNG" class="img-responsive center-block"/></div>
<p class="art-para">The thermal radiation from single tip burner obtained at
different position and wind speed are included in Table 1.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-table1.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Three tip burner utilized ethylene as a flaring gas to
measure heat radiation from flare flame in three different
locations with wind blowing from south to the north direction. The set up for taking measurements is shown in Figure 5. Heat
radiation from three tips burner flare system results for the
different position and 11.2 mph for cross wind speed are
summarized in Table 2.</p>
<p class="art-para">Three varies burner pressure were implemented with two
burner sizes to measure heat radiation from flare flame. These
measurements were taken at two different positions, 15 m
and 30 m from flare flame as shown in the test setup which
depicted in Figure 5.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-table2.PNG" class="img-responsive center-block"/></div>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure5.PNG" class="img-responsive center-block"/></div>
<p class="art-para"><b>Reaction mechanism</b><br>
Numerous reaction mechanisms have been suggested to
conduct a detailed kinetic modeling of combustion reaction
that hasability to solve the combustion chemistry and predict
concentrations of reaction components. Among these
mechanisms, Smith et al. <a href="#15">[15]</a> <a href="#19">[19]</a>suggest simplified four step
chemical reaction mechanism to approximate the flare gas
combustion. </p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq2.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Previous validation work has been carried out to assess
the accuracy of the combustion scheme shown above which
has also been incorporated into a CFD based flare model <a href="#14">[14]</a>
applied to several gas flare systems.</p>
<p class="art-para">The first reaction represents hydrocarbon fuel combustion
and describes the incomplete reaction of Fuel (F) with oxygen (O<sub>2</sub>) to produce Products of Combustion (PC) and black carbon (C) and some energy (MJ). This reaction produces S 1 kilograms
of black carbon per kilogram of fuel consumed where S 1
depends on the fuel type (0.005 used for light hydrocarbons
<a href="#20">[20]</a>). The second reaction represents the endothermic fuel
pyrolysis or cracking reaction which produces S2 kilograms of
black carbon (0.15 used for light hydrocarbons) and Intermediate
Species (IS) such as carbon monoxide. The third reaction
consumes black carbon and more oxygen to produce carbon
dioxide (CO<sub>2</sub>) and some energy. The final reaction consumes the
Intermediate Species formed in the second reaction plus some
additional oxygen to form combustion products and energy.</p>
<p class="art-para"><b>CFD Modeling</b><br>
Three computations for single tip, three tips, and multi-tip flares
were conducted using C3D software. The turbulent reaction
chemistry coupled with radiative transport between buoyancy
driven fires and surrounding objects was simulated using this tool.</p>
<p class="art-para"><b>Physical Parameters</b><br>
For the purposes of modeling of this study, an average gas
density of 1.04 kg/m3 was assumed. Also, a standard gas pressure
and temperature of 1 atm and 293.15 K was used. Moreover, an
average molecular weight of 25 kg/ kmol for the volume flow for
each flare was considered in the available operating data.</p>
<p class="art-para"><b>Single Tip Flare Modeling</b><br>
In order to obtain the flame dynamics as flame shape and
size of single flare tip, CFD simulation cases have been performed. Also, thermal radiation and soot estimation were found using
these computations. The simulations was carried out using 3-D
physical domain with dimensions of 6 m, 6 m, and 26 m for the
length, width, and height respectively. The flare tip was located 2
m above the ground level. Rectangular cells were used to
construct the mash of physical domain where the number of
cells in this domain was 110,000 cells as shown in Figure 6.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure6.PNG" class="img-responsive center-block"/></div>
<p class="art-para"><b>Three Tip Flare</b><br>
The 3-D domain of 30, 35, 25m dimensions was used for
simulation with radiation meters (solid boxes) which distance
in 15 m and 50 m respectively from the flare burners for the
three tips flare as shown in Figure 2. The mesh was refined
locally near burner tips and radiation measuring unit. The
total number of control volumes was 188,000 of computational
cells as shown in Figure 7.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure7.PNG" class="img-responsive center-block"/></div>
<p class="art-para"><b>Multi Tips Flare System</b><br>
There are many issues that associated with multi tip flare
system design. One of these issues is included the difficulties of
anticipated flare gas flow rates and flaring duration. Also, feed
composition and its temperature conditions to flaring system are
complex to specify. Moreover, flame height with respect to the
fence height should be considered in the design task. Furthermore, noise and radiation to the surrounding are so important in
designing process. In multi-tip flares, large plume are created
from merging of all plumes of flare tips as shown in Figure 8.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure8.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Due to the large field of this kind of flare system, large
flare plume formed, and the risk associated with high flame
temperature and heat radiation, the flare performance
quantification is difficult to perform. Therefore, simulations
with suitable simulation package are used to quantify flare
performance with different scenarios. Around the full multitip
flare field wind fence. The main objectives of this fence are
to protect workers and equip ment from thermal radiation
and to protect flame shape form high wind speed that could
affect the flame shape or may cause flame extinguishment.</p>
<p class="art-para">An understanding of flare tip performance and wind
effects on flame are required in order to estimate emissions
from MTF. Also, more understanding with respect to the
effects of the wind and tip geometry on flame are needed.</p>
<p class="art-para">Also, knowledge the analysis of the transient flame, near tip
mixing for hundreds of tips in large flare fields is wanted. To
integrate these effects together, CFD modeling are used to
simulate these systems efficiently.</p>
<p class="art-para">The multi-tip flare field domain size was 35, 35, and 25
meters for the length, width, and height respectively. Figure 9
presents the mesh of multi tip flare system that included 1.2
million cells in which local refinement near burner rows and
tips was applied. To reduce computational time cost, rectangular orthogonal cells were used in all simulation cases. Two speeds for wind which are zero and 7 mph were
considered for all simulations. Also, propane and ethylene
gases were used as flare vent gases.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure9.PNG" class="img-responsive center-block"/></div>
<p class="art-para">The CFD model that validated against single and three
tips flare experimental data was used to simulate multi tip
flare performance.</p>
<p class="art-para"><b>CFD fundamental models</b><br>
C3d tool of CFD technique was used to obtain numerical
solutions for a 3D flare domain by simulating single tip and
three tips flare performance. Large Eddy Simulation (LES) as
the turbulence model was used. The governing equations for
the LES model assuming incompressible fluid flow are given
below <a href="#22">[22]</a>:</p>
<p class="art-para">The continuity equation is given in equation 6:</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq6.PNG" class="img-responsive center-block"/></div>
<p class="art-para">where &rho; is the gas density and u is the gas velocity vector.</p>
<p class="art-para">The momentum equation is shown in equation 7:</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq7.PNG" class="img-responsive center-block"/></div>
<p class="art-para">with as the body forces, P as the pressure, and represented as
the stress defined in equation 8:</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq8.PNG" class="img-responsive center-block"/></div>
<p class="art-para">The other governing equation to be solved is the energy
equation (equation 10). The C3d form of this equation is
introduced below:</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq9.PNG" class="img-responsive center-block"/></div>
<p class="art-para">where C<sub>p</sub> is the specific heat.</p>
<p class="art-para">To resolve sub-filter scales for LES turbulence model, the
Gaussian filter is used as shown in equation:</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq10.PNG" class="img-responsive center-block"/></div>
<p class="art-para">The following equations are used to model the kinetic
energy dissipation on subgrid scales to molecular diffusion is
present in equations (11) and (12):</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq12.PNG" class="img-responsive center-block"/></div>
<p class="art-para">with as the stress tensor, as the rate-of-strain tensor, and as
the turbulent eddy viscosity.</p>
<p class="art-para">The eddy viscosity is approximated as the characteristic
length scale times the velocity scale in most subgrid scale
models as illustrated by the Smagorinsky-Lilly model:</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq13.PNG" class="img-responsive center-block"/></div>
<p class="art-para">The equilibrium assumption was applied between energy
production and dissipation of small scales in this model.</p>
<p class="art-para">The multi species conversation equations form is shown
in equation (14)</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-eq14.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Where, m<sub>i</sub> is the mass fraction of species i, diffusion flux of
species i, R<sub>i</sub> is the mass creation or depletion by chemical
reactions, and S<sub>i</sub> source of mass.</p>
<p class="art-subhead">Results and Discussions</p>
<p class="art-para"><b>Soot Emission</b><br>
During the ignition process, flare gas fed to the atmosphere
has insufficient momentum and time to completely mix with
sufficient oxygen to fully burn the flare gas which results in
excessive black carbon formation during the pyrolysis step, reaction 2 of the 4- step mechanism. Nearly all flares exhibit the
characteristic black smoke puff (unreacted black carbon) formed
by incomplete combustion which occurs during the transient
ignition process. Practical experience with gas flaring suggests
the transient ignition process lasts approximately 10-30 seconds. A conservative estimate for combustion efficiency during the
ignition process is approximately 50%. Given the number of flare
ignition events per year and using an average gas flow and an
average molecular weight derived from flare operating data
included in the paper, the estimate is a minimum of 700,000
kilograms of unreacted hydrocarbon emissions from these flares.</p>
<p class="art-para"><b>Single tip and three tips flares</b><br>
Figure 10 and Figure 11 show comparisons between
experimental observed thermal radiation data with those
predicted by C3d simulation for wind speed of 12 and 6
respectively. Figure 11 shows that there is very good
agreement between experimental and predicted thermal
radiation from single tip flare with wind speed of 6 mph. The
predicted data for wind velocity of 12 tends to under estimate
the present experimental data, this may be due to the fact
that the high wind speed effects on the flame shape is not
constant and hence the amount of radiated heat will be
changeable. For the same position with different velocities in
Figure 10 and Figure 11, the thermal radiation decreases with
wind speed increasing. This may due to that high wind speed
cools the flame temperature and hence reduces the temperature difference between flame temperature and the
measuring body temperature. Also, the amount of heat
release from the shorter flame is less than for longer flames.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure10.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Figure 11, the thermal radiation decreases with wind
speed increasing. This may due to that high wind speed cools
the flame temperature and hence reduces the temperature
difference between flame temperature and the measuring
body temperature. Also, the amount of heat release from the
shorter flame is less than for longer flames.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure11.PNG" class="img-responsive center-block"/></div>
<p class="art-para">The measured and predicted heat radiation data for three
tips flare are shown in Figure 12 and Figure 13 with tips size of 3
and 4 inches respectively, for different values of burner pressure. The trend of results indicates an increase in the thermal radiation
with increasing burner pressure. This can be explained, as the
pressure of burner increase, the amount of flared gas will be
larger and this will increase the amount heat radiation. Figure 12
and Figure 13 show a good agreement between experimental
and predicted data for thermal radiation.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure13.PNG" class="img-responsive center-block"/></div>
<p class="art-para"><b>Thermal Radiation emission</b><br>
The effect of wind speedon the heat radiation at burner
pressure of 2.8 psi and at distance of 50 foot is shown in
Figure 14. This figure indicates decrease in the thermal
radiation with increasing the wind velocity. This decreasing
could be a result of the reducing of flame temperature with
high wind velocity.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure14.PNG" class="img-responsive center-block"/></div>
<p class="art-para"><b>Multi tips Flare system</b><br>
The predicted flame height and heat radiation for full
field of 405 burner tip is presented in Figure 15.Also, the
combustion products are shown in the same figure. The heat
radiation rate was found to be 61000 and 35000 watt/m2 on
the left and right walls respectively for the peak flow of flue
gases. Moreover, values of 6600 and 6600 watt/m2 on the left
and right walls respectively, when the flow is sustainable, are
obtained for the heat radiation. These cases were performed
with no wind effect.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-131-figure15.PNG" class="img-responsive center-block"/></div>
<p class="art-subhead">Conclusions</p>
<p class="art-para">Testing has been conducted for a single flare tip and a
3-flare tip system to measure the flame height and radiation
flux when burning propane and Tulsa natural gas. These tests
were conducted in a no-wind ambient condition as well as a
6-12 mile per hour wind conditions. The non-wind flame
height for the single flare tip test was measured to be 48 - 53
ft high while the flame height in windy conditions was
measured to be approximately 35 ft high. In the windy
condition, the flame was also wider and had less radiation flux than the flame in non-wind conditions. The multi-tip tests
were conducted to assess flame interaction and cross lighting
of adjacent flare tip burners using a single pilot. The three tip
tests showed s flame height essentially the same as the single
flare tip test. This indicated the flames operated independently
and did not merge into a single larger/taller flame. Testing
showed that as the tip pressure increased from 2.8 psi to 11.4
psi the flame height increased as did the radiant flux (3344 W/
m<sup>2</sup> to 6192 W/m<sup>2</sup>). This same behavior was observed for the
larger 4" flare tip.</p>
<p class="art-para">Given the test results, a detailed CFD model was developed
and used to simulate the flare flame shape and height for
various flare gas flow rates, tip pressure and size and ambient
wind conditions. Predicted soot levels and radiant heat flux
from the single and multiple flare tests were compared to the
measured values to validate the model. Using the validated
model, predictions for single, three, and multi tip flare systems
were performed using an LES based CFD model. The validated
CFD model was also used to simulate a large industrial multipoint
ground flare system burning approximately 260 kg/s of
flare gas. Using the validated flare model, the predicted
radiation from a single and three flare tip showed good
agreement with the measured data. In addition, simulation of
a 400 multi-tipground flare system provided a reasonable
estimate of the flame shape and flame height with the
associated heat radiation profile on the surrounding wind
fence and nearby equipment. Furthermore, at the maximum
possible flare gas flow and at the sustained flare gas flow, the
heat radiation predicted on the wind fence walls were
estimated. Using the combustion simulations for this multipoint
ground flare, assuming 50% combustion efficiency
during a 10-30 second ignition period, we estimated
approximately 700,000 kg/yr of unburned hydrocarbons may
be emitted from an industrial scale multi-point ground flare.</p>
<p class="art-subhead">References</p>
<ol> 
<li class="ref"><div id="1" name="1">Elvidge CD, Zhizhin M, Baugh K, Hsu FC, Ghosh T. <a href="http://www.mdpi.com/1996-1073/9/1/14" target="_blank">Methods for Global
Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer
Suite Data.</a> Energies. 2016; 9(1): 14. doi: 10.3390/en9010014</div></li>
<li class="ref"><div id="2" name="2">"The WorldBank," [Online]. Available: http://www.worldbank.org/en/
programs/gasflaringreduction#7.</div></li>
<li class="ref"><div id="3" name="3">Enforcement-Alert, "EPA Enforcement Targets Flaring Efficiency
Violoations," EPA-325-F-012-002, 2012.</div></li>
<li class="ref"><div id="4" name="4">API Standard 521, Guide for Pressure-Relieving and Depressuring
Systems, American Petroleum Institute, 2012.</div></li>
<li class="ref"><div id="5" name="5">U.S. EPA. Integrated Science Assessment (ISA) for Particulate Matter (Final
Report, Dec 2009). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009.</div></li>
<li class="ref"><div id="6" name="6">Conrad BM, Johnson MR. <a href="https://pubs.acs.org/doi/abs/10.1021/acs.est.6b03690" target="_blank">Field Measurements of Black Carbon Yields
from Gas Flaring.</a> Environmental Science & Technology. 2017; 51(3): 1893-
1900. doi: 10.1021/acs.est.6b03690</div></li>
<li class="ref"><div id="7" name="7">Johnson MR, Devillers RW, Thomson KA. <a href="https://www.tandfonline.com/doi/abs/10.1080/02786826.2013.809401" target="_blank">A Generalized Sky-LOSA Method
to Quantify Soot/ Black Carbon Emission Rates in Atmospheric Plumes of
Gas Flares.</a> Aerosol Science and Technology. 2013; 47(9): 1017-1029. doi: 10.1080/02786826.2013.809401</div></li>
<li class="ref"><div id="8" name="8">McEwen JD, Johnson MR. Black carbon particulate matter emission factors
for buoyancy-driven associated gas flares. J Air Waste Manag Assoc. 2012; 62(3): 307-321.</div></li>
<li class="ref"><div id="9" name="9">Allen DT, Torres VM, Saldana FC. <a href="https://www.sciencedirect.com/science/article/pii/S2211339816300569#!" target="_blank">Carbon dioxide, methane and black
carbon emissions from upstream oil and gas flaring in the United States.</a>
Chemical Engineering. 2016; 13: 119-123. doi: 10.1016/j.coche.2016.08.014</div></li>
<li class="ref"><div id="10" name="10">Lack DA, Moosm&uuml;ller H, McMeeking GR, Chakrabarty RK, Baumgardner D. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877426/" target="_blank">Characterizing elemental, equivalent black, and refractory black carbon
aerosol particles: a review of techniques, their limitations and uncertainties.</a>
Anal Bioanal Chem. 2014; 406(1): 99-122. doi: 10.1007/s00216-013-7402-3</div></li>
<li class="ref"><div id="11" name="11">Weyant CL, Shepson PB, Subramanian R, Cambaliza MOL, Heimburger A, et al. <a href="https://pubs.acs.org/doi/abs/10.1021/acs.est.5b04712" target="_blank">Black Carbon Emissions from Associated Natural Gas Flaring.</a>
Environmental Science & Technology Black. 2016; 50(4): 2075-2081. doi: 10.1021/acs.est.5b04712</div></li>
<li class="ref"><div id="12" name="12">Wang A, Lou HH, Chen D, Yu A, Dang W, et al. Combustion mechanism
development and CFD simulation for the prediction of soot emission
during flaring. Front. Chem. Sci. 2016; 10(4): 459-471.</div></li>
<li class="ref"><div id="13" name="13">Smith JD, Jackson R, Suo-Antilla A, Smith S, Allen D. Achieving Environmental
Compliance through Proper Destruction Efficiency of Low-Profile Multi-Tip
Flare Systems. American Flame Research Committees- Industrial Combustion
Symposium, Hyatt Regency Hotel Houston, Texas, September 2014.</div></li>
<li class="ref"><div id="14" name="14">Smith J, Suo-Antilla A, Smith S, Modi J. Evaluation of the Air-Demand, Flame Height, and Radiation Load on the Wind Fence of a Low-Profile
Flare Using ISIS-3D," in AFRC-JFRC 2007 Joint International Combustion
Symposium, Marriott Waikoloa Beach Resort, Hawaii, 21 - 24 October
2007.</div></li>
<li class="ref"><div id="15" name="15">Smith J, Suo-Antilla A, Philpott N, Smith S. Prediction and Measurement
of Multi-Tip Flare Ignition. in American Flame Research Committees -
International Pacific Rim Combustion Symposium, Advances in Combustion
Technology: Improving the Environment and Energy Efficiency, Sheraton
Maui, Hawaii, September 26-29, 2010.</div></li>
<li class="ref"><div id="16" name="16">Smith J, Jackson R, Suo-Anttila A, Hefley K, Wade D, et al. Prediction and
Measurement of Multi-Tip Flare Ignition in "American Flame Research
Committees 2013 - Industrial Combustion Symposium, Safe and Responsible
Development in the 21st Century, Sheraton Kauai, Hawaii, September 22-25, 2013.</div></li>
<li class="ref"><div id="17" name="17">Smith J, Jackson R, Suo-Anttila A, Hefley K, Smith Z, et al. Radiation Effects
on Surrounding Structures from Multi-Point Ground Flares, in AFRC 2015
Industrial Combustion Symposium, Historic Fort Douglas Officers Club
University of Utah, Salt Lake City, Utah, September 9-11, 2015.</div></li>
<li class="ref"><div id="18" name="18">Miller D. New Model for Predicting <a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/prs.11867" target="_blank">Thermal Radiation from Flares and
High Pressure Jet Fires for Hydrogen and Syngas.</a> Process Safety Progress. 2017; 35(3): 237-251. doi: 10.1002/prs.11867</div></li>
<li class="ref"><div id="19" name="19">Smith J, Jackson R, Sreedharan V, Suo-Anttila A, Allen D, Smith S. Withstanding the Wind. Hydrocarbon Engineering. 2016; 21(10): 43-49.</div></li>
<li class="ref"><div id="20" name="20">Said R, Garo A, Borghi R. <a target="_blank" href="https://www.sciencedirect.com/science/article/pii/S0010218096000685">Soot Formation Modeling for Turbulent Flames.</a>
Combustion and Flame. 1997; 108: 71-86. doi: 10.1016/S0010-2180(96)00068-5</div></li>
<li class="ref"><div id="21" name="21">Smith JD, Suo-Anti A, Jackson R, Smith S. Prediction of Plume Formation
and Dispersion from Gas Flares, in 2012 Annual American Flame Research
Committee Meeting, Salt Lake City, Utah, September 5 - 7, 2012.</div></li>
<li class="ref"><div id="22" name="22">Smith J, Adams B, Jackson R, Suo-Anttila A. Use of RANS vs LES Modelling
for Industrial Gas-fired Combustion. Industrial Combustion. 2017.</div></li>
</ol>   
</div>  
</div>
</div>
</section>
</div></div>
</div><!--end of row-->
</div><!--end of container-body-->
</div><!--end of content-area-->
<?php include 'includes/jrnfooter.php';?>

Youez - 2016 - github.com/yon3zu
LinuXploit