���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 132.148.112.237  /  Your IP : 216.73.216.191
Web Server : Apache
System : Linux p3plmcpnl497166.prod.phx3.secureserver.net 4.18.0-553.54.1.lve.el8.x86_64 #1 SMP Wed Jun 4 13:01:13 UTC 2025 x86_64
User : m483e053zf9r ( 10082050)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /home/m483e053zf9r/public_html/madridge.org/journals-admin/uploads/fulltext/IJPR/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /home/m483e053zf9r/public_html/madridge.org/journals-admin/uploads/fulltext/IJPR/ijpr-1000124.php
<?php
$extpath="../";
include 'includes/jrnheader.php';
include 'includes/jrnleft-panel.php';
//$imgpath=""; ?>
<div class="col-md-9 padding-top-15">
<section class="post">
<div class="row">
<div class="col-md-12">
<div class="articledetails article-header clearfix">
<p class="art-type">Research Article</p>
<p class="art-title">Effects of lean alkanolamine temperature on the
performance of CO<sub>2</sub> absorption processes using
alkanolamine solutions </p>
<p class="art-author"><?php $authors="Abolghasem Kazemi<sup>*</sup>"; echo (stristr($authors,$coauthor))?str_replace($coauthor,"<a href='".$extpath."authors/".$courl."' target='_blank'>".$coauthor."</a>",$authors):$authors; ?></p>
<p class="art-affl">
Chemical engineering department, Isfahan University of Technology, Isfahan, Iran
</p>
<p class="art-aff"><b>*Corresponding author: <?php $corresponding_author="Abolghasem Kazemi"; echo ($coauthor!="" && $coauthor==$corresponding_author)?"<a href='".$extpath."authors/".$courl."' target='_blank'>".$coauthor."</a>":$corresponding_author;?></b>, Chemical engineering department, Isfahan University of Technology, Isfahan, Iran, Tel: +989171492783, E-mail: <a href="mailto:abolghasemkazemi@gmail.com">abolghasemkazemi@gmail.com</a>
</p>
<p class="art-aff"><b>Received:</b> May 26, 2018
<b>Accepted:</b> May 30, 2018
<b>Published:</b> June 4, 2018</p>
<p class="art-aff"><b>Citation: </b> Kazemi A. Effects of lean alkanolamine
temperature on the performance of CO<sub>2</sub>
absorption processes using alkanolamine
solutions. <i>Int J Petrochem Res.</i> 2018; 2(1): 141-147. doi: <a href="https://doi.org/10.18689/ijpr-1000124">10.18689/ijpr-1000124</a></p>
<p class="art-aff"><b>Copyright:</b> &copy;  2018 The Author(s). This
work is licensed under a Creative Commons
Attribution 4.0 International License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original work is properly cited.</p>
<p><a href="<?php echo $extpath;?><?php echo $jres['journal_link'];?>/ijpr-1000124.pdf" class="btn btn-danger pull-right" target="_blank">Download PDF</a></p>
</div>
<div class="articlecontent">
<p class="art-subhead">Abstract</p>
<p class="art-para">Acid gas removal from the natural gas using alkanolamine processes is the most
common technology used for sweetening of natural gas. Based on the sour and sweet gas
specifications, several alkanolamine solutions can be used for acid gas removal, all of which
are well developed processes. However, one of the remaining issues is the costs associated
with the processes. In this study, DEA, DGA and mixed (MDEA+DEA) processes are designed
for sweetening the natural gas produced in one of the gas fields having high CO<sub>2</sub>/H<sub>2</sub>S ratio. For each process, seven scenarios are designed to investigate the effects of the cooler&#700;s
operating parameters on the performance of the process. For each scenario, the duty of the
cooler is varied in order to have a specific lean amine temperature entering the absorber. Each scenario is simulated using Aspen HYSYS and economically evaluated using Aspen
economic evaluation. Based on the results of this study, the required solution circulation
rates slightly increases when the lean amine temperature increases. However, Lower
process capital costs and lower cooler&#700;s duty were obtained by operating the DEA and DGA
processes at higher values of lean amine temperature. Also, operating at lower lean amine
temperatures resulted in lower hydrocarbon pick up in case of MDEA+DEA process.</p>
<p class="art-para"><b>Keywords:</b> CO<sub>2</sub>; Natural Gas Sweetening; Cooler&#700;s Parameters; DEA; DGA; Mixed Amine</p>
<p class="art-subhead">Introduction</p>
<p class="art-para">The processes using Alkanolamine solutions for acid gas removal from natural gas are
the most common processes used for the removal of acid gases from natural gas. The
alkanolamine processes are well developed processes, each of which is suitable for
sweetening the natural gas with certain sour and sweet gas specifications <a href="#1">[1</a>-<a href="#9">9]</a>. However, one of the main issues is the large costs associated with these processes <a href="#10">[10</a>-<a href="#12">12]</a>. Numerous
studies have been carried out to reduce the costs associated with these processes.</p>
<p class="art-para">Polasek et al studied alternative flow schemes for natural gas sweetening <a href="#11">[11]</a>, Bae et
al studied split flow configuration for the process <a href="#13">[13]</a>, Warudkar et al studied the effects
of stripper operating parameters <a href="#10">[10]</a>, Cousins et al studied modifications on the process
flow sheet <a href="#14">[14]</a>, Sohbi et al and Fouad et al studied effects of using mixed alakanolamines
<a href="#6">[6</a>, <a href="#7">7]</a>, Kazemi et al and Ghanbarabadi et al performed comparative studies between
different processes <a href="#15">[15</a>, <a href="#16">16]</a>, Nuchitprasitichai et al, &#216;i et aland Mores et al used optimization
techniques <a href="#12">[12</a>, <a href="#17">17, <a href="#18">18]</a> Freeman et al proposed using concentrated piperazine mixtures <a href="#8]">[8]
</a>and Banat et al used energy analysis method <a href="#19">[19]</a> for reducing costs and energy
requirements of the sweetening processes.</p>
<p class="art-para">For the sweetening of the natural gas with certain specifications, several processes
might be applicable. One of the questions which arise in these situations is that which
process is the most economical process to be used for sweetening of the natural gas with these specifications? Also, one of important parameters which
affect the costs associated with a sweetening process is the lean
solution temperature entering the absorber. Changing the lean
amine temperature might have an impact on the solution flow
rate needed in order to reach the wanted specifications of sweet
natural gas which strongly affects the costs associated with the
natural gas sweetening processes. On the other hand, the
choice of lean amine temperature, affects the duty that is
needed to be applied on the cooler. Another question is that at
what temperature, should the lean solution enter the absorber
in order to have the best economic performance? In this study I
tried to answer these two questions for the case of the natural
gas produced in a gas field having high CO<sub>2</sub>
/H<sub>2</sub>S ratio, which has
relatively high CO<sub>2</sub>
 and low H<sub>2</sub>S contents and has low pressure.</p>
<p class="art-para">In this study, the effects of cooler&#700;s operating parameters are
investigated. The DEA, DGA and mixed(MDEA+DEA) processes
are designed for sweetening of the natural gas produced in a
gas field having high CO<sub>2</sub>
/H<sub>2</sub>S ratio. Seven scenarios are designed
to investigate the effects of cooler&#700;s operating parameters on the
performance of the processes. Each scenario is simulated using
Aspen HYSYS and economically evaluated using Aspen economic
evaluation. The results of simulation and economic evaluation
are then studied to select the optimum operating conditions for
the process&#700;s cooler. Although there have been some studies on
the effects of lean amine parameters on the performance of the
sweetening processes <a href="#20">[20]</a>, I couldn&#700;t find a comprehensive
research, studying the suggested target parameters for the
selected processes.</p>
<p class="art-subhead">Feed gas specifications</p>
<p class="art-para">All the three processes are designed for sweetening the
natural gas produced in a gas field having high CO<sub>2</sub>
/H<sub>2</sub>S ratio. The sour gas produced in this field has the specifications. It
can be seen from the data presented that the natural gas
produced in this gas field has high CO<sub>2</sub>
/H<sub>2</sub>S ratio, high CO<sub>2</sub>
content, low H<sub>2</sub>S content and low pressure. Thus, it is expected
that the results of this study would be applicable for
sweetening of the natural gas produced in similar gas fields.</p>
<p class="art-para">In this study, the desirable sweet gas specifications are
supposed to be concentrations lower than 1mol% CO<sub>2</sub>
 and
lower than 4ppm H<sub>2</sub>S.</p>
<p class="art-subhead">An overview of the three processes</p>
<p class="art-para">Alkalonomines are widely used for acid gas removal from
natural gas <a href="#1">[1</a>, <a href="#15">15</a>, <a href="#21">21</a>-<a href="#26">26]</a>, they are classified to primary
amines, secondary amines and tertiary amines based on the
number of alkyl groups having bonds with the N atom in the
structure of amino group. The most common alkanolamines
used are Monoethanolamine (primary), Diethanolamine (secondaray) and methyldiethanolamine (tertiary) <a href="#15">[15</a>, <a href="#25">25</a>-<a href="#29">29]</a>. Selection of an alkanolamine process for sweetening of
natural gas affects the capital and operating costs, energy
requirements, sizing of the equipment and in some cases the
type of equipment needed for sweetening <a href="#25">[25</a>, <a href="#27">27]</a>. The
alkanolamines absorb the acid gases from natural gas via reactions (1-2) <a href="#17">[17</a>, <a href="#30">30]</a>.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-eq1.PNG" class="img-responsive center-block"/></div>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-eq2.PNG" class="img-responsive center-block"/></div>
<p class="art-para"><b>DEA</b></p>
<p class="art-para">Diethanolamine, abbreviated as DEA is a secondary
amine, aqueous solutions of which are used to absorb
hydrogen sulfide and carbon dioxide from natural gas <a href="#25">[25</a>, <a href="#26">26</a>, <a href="#31">31]</a>. Many products such as COS, CS<sub>2</sub>
, SO<sub>3</sub>
 and SO<sub>2</sub>
 can catalyze
degradation or deactivation of alkanolamine solutions <a href="#2">[2</a>, <a href="#32">32]</a>. Due to low reaction rate with CS<sub>2</sub>
 and COS, when considerable
amounts of CS<sub>2</sub>
 and COS are present in the sour gas, DEA and
other secondary amines are the better choice for natural gas
sweetening <a href="#25">[25</a>, <a href="#26">26]</a>. DEA solutions are rather unselective and
could be used for absorption of either H<sub>2</sub>S or CO<sub>2</sub>
 from the
natural gas <a href="#26">[26]</a>. DEA solutions are industrially used with
concentrations between 25-40wt% <a href="#27">[27</a>, <a href="#33">33]</a>. The DEA
sweetening process is simulated using Aspen HYSYS simulator
and the different cases of simulation are economically
evaluated using aspen economic evaluation (Icarous), the
results are compared to that of DGA and MDEA+DEA
processes. For simulation of this process, the DBR-Amine
property package has been used. The simulation flow sheet is
shown in Figure 1. A tray absorber with 20 theoretical stages
was used. Also, a tray column with 18 theoretical stages was
used for modeling the regenerator column. The pressure of
the regenerator varies between 27.5 psia (condenser) to 31.5
psia (reboiler). The rich DEA pressure is reduced to 90 psia in
the valve and no pressure drop was assumed in the two phase
separator.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure1.PNG" class="img-responsive center-block"/></div>
<p class="art-para"><b>DGA</b>
<p class="art-para">Diglycolamine is a primary amine used for natural gas
sweetening. The low vapor pressure of DGA allows using
aqueous solutions of this amine in rather high concentrations (40-70 wt%) for natural gas sweetening which results in low
amine circulation rates needed for the natural gas sweetening
<a href="#25">[25</a>, <a href="#33">33]</a>. DGA solutions are particularly effective for treatment
of low pressure natural gas. DGA has a tendency to selectively
absorb CO<sub>2</sub>
 in presence of H<sub>2</sub>S <a href="#33">[33]</a>, however DGA absorbs
aromatic compounds which causes the sulfur recovery unit to
be more complicated <a href="#34">[34]</a>, thus, DGA is a good choice for
sweetening of natural gas with relatively high CO<sub>2</sub>
concentration. Based on these statements, DGA is selected as
one of the alternatives for sweetening of natural gas with the
specifications. In this study a 65wt% aqueous solution of DGA is used for sweetening of the natural gas. Aspen Hysys and
Aspen economic evaluation have been used for simulation
and economical evaluation of this process. The DBR-Amine
property package was used for simulation of this process. The
simulation flow sheet for this process is shown in Figure 2. A
tray absorber with 20 theoretical stages was used. Also, a tray
column with 20 theoretical stages was used for modeling the
regenerator column. The pressure of the regenerator is set to
24 psia. The rich DEA pressure is reduced to 25 psia in the
valve and no pressure drop was assumed in the two phase
separator.</p> 
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure2.PNG" class="img-responsive center-block"/></div>
<p class="art-para"><b>MDEA+DEA</b></p>
<p class="art-para">Methyldiethanolamine (MDEA) is a tertiary amine known
to have higher selectivity in absorbing H<sub>2</sub>S in presence of CO<sub>2</sub>
<a href="#27">[27]</a>. The reaction of MDEA with H<sub>2</sub>S is almost instantaneous
while its reaction with CO<sub>2</sub>
 is occurs at lower rates. However, numerous studies show that addition of small amounts of
primary or secondary amines to a tertiary amine causes the
overall CO<sub>2</sub>
 absorption rate of the process to increase <a href="#6">[6</a>, <a href="#25">25</a>, <a href="#27">27</a>, <a href="#33">33</a>, <a href="#35">35</a>-<a href="#37">37]</a>. For sweetening of the natural gas, because of
relatively high CO<sub>2</sub>
 content in the sour gas, I decided to add
10wt% percent of a secondary amine (DEA) to the solution to
increase the CO<sub>2</sub>
 absorption rate of the MDEA process which
can make this process a promising process for sweetening of
the natural gas described in section 2. The other reason for
mixing the suggested amine solutions is to combine the
reactivity of the secondary amine and relatively low
regeneration energy requirements of tertiary the amine. MDEA&#700;s typical concentration in aqueous solutions is 30-
50wt% in industrial applications. In this study an aqueous
solution of 40wt% MDEA and 10wt%DEA is selected for
sweetening the natural gas introduced in section 2 which is
one the cases with the best performance regarding absorption
of CO<sub>2</sub>
 <a href="#6]">[6].</a> Aspen HYSYS is used for simulation of this process
and Aspen economic evaluation is used for economically
evaluating this process. The DBR-Amine property package is
used for simulation of this process. The simulation flow sheet
is shown in Figure 3. A tray absorber with 20 theoretical stages
was used. Also, a tray column with 20 theoretical stages was
used for modeling the regenerator column. The pressure of
the regenerator is set to 24 psia. The rich DEA pressure is
reduced to 25 psia in the valve and no pressure drop was
assumed in the two phase separator.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure3.PNG" class="img-responsive center-block"/></div>
<p class="art-subhead">Results and discussion</p>
<p class="art-para"><b>Simulation results and operating conditions</b></p>
<p class="art-para">For each of the three processes, seven different scenarios
have been designed for studying the effects of cooler&#700;s
operating parameters on the performance of the three
sweetening processes. Each of these scenarios, shows the
characteristics of the system at a certain operating condition
of the cooler. The cooler&#700;s duty in each scenario is varied until
the lean solution temperature reached the designed value. In
each scenario, the process&#700;s parameters are changed in such
a way to reach concentrations lower than 1mol% CO<sub>2</sub>
 and
lower than 4ppm H<sub>2</sub>S for the sweet natural gas.</p>
<p class="art-para">In simulation of these processes, the minimum temperature
approach for all of the heat exchangers has been assumed to
be 10&deg;C and the pump&#700;s adiabatic efficiency was set at 75%.</p>
<p class="art-para">After completing the simulation of three processes, for each
process these seven scenarios are applied and the process is
economically evaluated using aspen economic evaluation v7.3.</p>
<p class="art-para">One of the most important characteristics of a sweetening
process is the circulation rate (gpm) of the solution <a href="#15">[15</a>, <a href="#38">38]</a>. Increasing the solution flow rate causes the capital and
operating costs, sizing of equipment and energy requirements
of the process to increase <a href="#15">[15</a>, <a href="#25">25</a>, <a href="#39">39]</a>. The results of solution
flow rate of the processes in different scenarios are shown in
Figure 4. It is clear from the data presented in Figure 4 that
the amine circulation rate for the mixed amine process is
higher than that of DGA and DEA in seven scenarios. It is also
shown in Figure 4 that when the lean amine temperature
increases, the solution flow rate needed for each process
slightly increases and the minimum required solution
circulation rate is observed at the lowest lean amine
temperature. As mentioned earlier, increasing the solution
flow rate in a sweetening plant causes the plant&#700;s capital and
operating costs along with the energy requirements and
sizing of the equipment to increase. On the other hand, reducing the temperature of the lean solution requires larger
duty of the cooler. This larger duty could be obtained by
increasing the contact area of heat exchanger or changing the
cooling material, in either way, this change will cause the
plant&#700;s operation to be more expensive. Based on these
statements, it seems that there should be an optimum point
of operation for the cooler of a sweetening plant. In this study
I tried to find this point for three different sweetening processes. As shown in Figure 4, the solution circulation rate
for the mixed process is significantly higher than solution
circulation rate of the DEA process. This observation is
attributed to be due to the fact that methyldiethanolamine
selectively absorbs H<sub>2</sub>S and has lower capacities for absorption
of CO<sub>2</sub>
 <a href="#25">[25</a>, <a href="#26">26</a>, <a href="#40">40]</a>.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure4.PNG" class="img-responsive center-block"/></div>
 <p class="art-para">Another important aspect of operation of sweetening
processes is the fraction of hydrocarbons absorbed into the
solution in the contactor. Based on previous studies, the
hydrocarbon co-absorption is mainly a disadvantage of physical
and physical-chemical solutions <a href="#9">[9</a>, <a href="#25">25</a>, <a href="#27">27</a>, <a href="#41">41</a>, <a href="#42">42]</a>, however, I
examined this parameter on the three chemical absorption
systems to verify the simulation results. As shown in Figure 5, although for the mixed amine process at lower temperatures
hydrocarbon pick up is enhanced, the hydrocarbon pick up by
the solution remains at a very low rate for different cooler&#700;s
operating conditions in the three processes. The maximum
hydrocarbon pick up by the solution in the 21 simulation
scenarios was 0.0004 for the mixed amine process. It is also
observed in Figure 5 that at temperatures higher than 45o
C, the
hydrocarbon pick up by the MDEA+DEA process decreases. However the hydrocarbon pick up by the DEA and DGA
processes is not affected by lean amine temperature.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure5.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Since the chemical reactions leading to absorption of acid
gases into the alkanolamine solutions are exothermic <a href="#25">[25</a>, <a href="#43">43</a>-
<a href="#45">45]</a>, it is expected that the temperature of rich amine be higher
than that of the lean amine entering the contactor and the
temperature difference between these streams can be a
parameter showing the intensity of absorption process in the
contactor. In Figure 6 and Figure 7 the temperature difference
between rich and lean amine streams, and the rich amine
temperatures are shown. Based on the data shown in Figure 7, the temperature of reach amine increases when the lean amine
temperature entering the contactor is increased. However, for
the three processes the temperature difference between the
two streams decreases with increasing the lean amine
temperature. For the DEA process, the rich amine temperature
is even lower than the temperature of leanamine at lean amine
temperatures higher than 35&deg;C. This observation is attributed
to be due to higher heat transfer between the cold feed gas (at
21&deg;C) and the lean amine due to increase in temperature
difference between feed gas and the lean amine streams.</p>
<p class="art-para">Another important issue that must be addressed here, is that
the rich amine temperature directly affects the energy requirements
of the system because the rich amine at the bottom of contactor
needs to be regenerated at high temperatures. Thus, when the
rich amine temperature is increased, the system&#700;s energy
requirements (or heat exchanger&#700;s contact area) will decrease.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure6.PNG" class="img-responsive center-block"/></div>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure7.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Another important characteristic of the sweetening
processes is the energy requirements. The lean amine
temperature directly affects the duty that needs to be applied in
the cooler. Lean amine temperature also affects the stripper&#700;s
energy requirements and the heat exchanger duty. Figure 8
shows that when the lean solution temperature decreases, the
cooler&#700;s duty increases for the three processes which is an
expected observation because the temperature difference
around the cooler increases by decreasing the outlet temperature. The minimum cooler duty is observed at the highest lean amine
temperature which is in accordance to the expected trend. It is
also shown in Figure 9 that the heat exchanger duty follows a
reducing trend by increasing the lean amine temperature. Another important observation in Figure 9 is considerably lower
heat exchanger duty for the DGA process compared to DEA and
MDEA+DEA processes. This observation is because of the fact
that the temperature of the rich amine in the DGA process is
considerably higher than that of the other two processes. Low
cooler and heat exchanger duty of the DEA process are also
attributed to be due to lower solution circulation rate of this
process compared to the DGA and MDEA+DEA processes.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure8.PNG" class="img-responsive center-block"/></div>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure9.PNG" class="img-responsive center-block"/></div>
<p class="art-para">After completing simulation of seven scenarios for each of
the processes, each scenario is economically evaluated using
aspen economic evaluation. It has been assumed that the projects are about be constructed in 2014. The results are
obtained in US$ or US$/year for different scenarios. Parameters
such as complexity of the processes, start date and level of
instrumentation are taken into account for estimation capital
and operating costs of the processes. As shown in Figure 10, based on the results of economic evaluation, the capital costs
of the MDEA+DEA process passes through a minimum when
the lean amine temperature reaches 40 &deg;C. Also it is clear that
with increasing the lean amine temperature from 30 &deg;C to
60&deg;C, the capital costs of the DEA and DGA processes follow a
decreasing trend. The lowest process capital cost is obtained
when the DEA process is used and the lean amine temperature
of this process is the maximum examined temperature and the
capital costs of the DGA process are slightly higher than capital
costs of the DEA process.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure10.PNG" class="img-responsive center-block"/></div>
<p class="art-para">The annual operating cost results of the seven scenarios
simulated for each of the processes are shown in Figure 11. According to the data shown in Figure 11, the annual
operating costs of the three processes are not strong functions
of the lean amine temperature. These observations can be
justified by undermining the data shown in Figure 8 and
Figure 9. It was mentioned earlier that the stripper&#700;s reboiler
duty doesn&#700;t vary with changing the lean amine temperature, also, it was mentioned that decreasing the lean amine
temperature has a positive effect on the heat exchanger&#700;s
duty and a negative effect on the cooler&#700;s duty. Based on
these information it is concluded that the negative and
positive effects of this change are not very steep or that these
effects neutralize each other and this the reason that no
discernable change in utility costs and subsequently annual
operating costs of the system is reported. It is also clear from
Figure 11that the annual operating costs and utility costs of
the DEA process are lower than that of the DGA and the
MDEA+DEA processes.</p>
<p class="art-para">Considering a life cycle of 25 years for operating the three
processes, the dominant costs associated with the processes
are the annual operating costs and utility costs. From the data
shown in Figure 11 it is observed that the annual operating
costs and utility costs of the DGA and DEA processes are not
affected by the choice of lean amine temperature, so for these two processes, the lean amine temperature doesn&#700;t play a
crucial part in the costs of the processes. However, for the
MDEA+DEA process, the results are more complicated and
the annual operating costs of the process don&#700;t follow a
simple trend and the minimum annual operating costs are
observed at lean amine temperature of 30&deg;C. Considering a
life cycle of 25 years, this temperature shows the best
economic performance for this process.</p>
<div class="art-img">
<img src="<?php echo $imgpath;?>images/IJPR-124-figure11.PNG" class="img-responsive center-block"/></div>
<p class="art-para">Based on the fore mentioned discussions, there are
several advantages in operating the DGA, DEA and MDEA+DEA
sweetening processes with higher lean amine temperatures. Lower process&#700;s capital costs, lower rich amine hydrocarbon
pick up in case of MDEA+DEA process and lower cooler&#700;s
duty are obtained by operating the process at higher lean
amine temperatures.</p>
<p class="art-para">An improvement to the results of this research can be
investigation of cost and energy requirements of other
suitable sweetening processes. Investigating costs and energy
requirements of other suitable processes for the sweetening
of natural gas with specifications close to the natural gas that
i have considered, can be the topic of future studies.</p>
<p class="art-subhead">Conclusion</p>
<p class="art-para">Effects of cooler&#700;s operating parameters on the
performance of three sweetening processes designed for
sweetening the natural gas produced in a gas field having
high CO<sub>2</sub>
/H<sub>2</sub>S ratio (with the specifications described in
section 2) have been investigated. DEA, DGA and MDEA+DEA
processes have been selected for sweetening the natural gas
produced in this gas field. Each of these processes was
designed in such a way to reach concentrations lower than
1mol% CO<sub>2</sub> and lower than 4ppm H<sub>2</sub>S for the sweet gas.</p>
<p class="art-para">Based on the results of this study, for DEA and DGA
processes, in the range of lean amine temperature between
30 &deg;C &#8211; 60 &deg;C, operating the processes with higher lean amine
temperature exhibit several advantages. Lower process&#700;s
capital costs, lower rich amine hydrocarbon pick up in case of
MDEA+DEA process and lower cooler&#700;s duty were obtained
by operating the processes at higher values of lean amine temperature. Although the circulation rate of the solution
needed to reach concentrations lower than 1mol% CO<sub>2</sub>
 and
lower than 4ppm H<sub>2</sub>S for the sweet gas slightly increased
when the lean amine temperature increased, it is recommended
to operate the DGA and DEA sweetening processes at higher
lean amine temperatures.</p>
<p class="art-para">An improvement to the results of this research can be
investigation of cost and energy requirements of other
suitable sweetening processes. Investigating costs and energy
requirements of other suitable processes for the sweetening
of natural gas with specifications close to the natural gas that
I have considered, can be the topic of future studies.</p>
<p class="art-subhead">References</p>
 <ol>
<li class="ref"><div id="1">Mokhatab S, Poe WA. Handbook of natural gas transmission and
processing: Gulf Professional Publishing; 2012.</div></li>
<li class="ref"><div id="2">Sanggie FW. Process modeling and comparison study of acid gas removal
unit by using different aqueous amines: Universiti Malaysia Pahang; 2011.</div></li>
<li class="ref"><div id="3">Versteeg GF, Van Swaalj W. <a href="https://pubs.acs.org/doi/abs/10.1021/je00051a011" target="_blank">Solubility and diffusivity of acid gases (carbon
dioxide, nitrous oxide) in aqueous alkanolamine solutions.</a> J. Chem. Eng. Data. 1988; 33(1): 29-l34. doi: 10.1021/je00051a011</div></li>
<li class="ref"><div id="4">Park SH, Lee KB, Hyun JC, Kim SH. <a href="https://pubs.acs.org/doi/abs/10.1021/ie010252o" target="_blank">Correlation and prediction of the
solubility of carbon dioxide in aqueous alkanolamine and mixed
alkanolamine solutions.</a> Ind. Eng. Chem. Res. 2002; 41(6): 1658-65. doi: 10.1021/ie010252o</div></li>
<li class="ref"><div id="5">Sidi-Boumedine R, Horstmann S, Fischer K, Provost E, F&#252;rst W, et al. <a href="https://www.sciencedirect.com/science/article/pii/S037838120300520X#!" target="_blank">Experimental determination of carbon dioxide solubility data in aqueous
alkanolamine solutions.</a> Fluid phase equilibria. 2004; 218(1): 85-94. doi: 10.1016/j.fluid.2003.11.014</div></li>
<li class="ref"><div id="6">Sohbi B, Meakaff M, Emtir M, Elgarni M. The using of mixing amines in an
industrial gas sweetening plant. Proceedings of World Academy of Science
Engineering & Technology. 2007; 25: 1307-6884.</div></li>
<li class="ref"><div id="7">Fouad WA, Berrouk AS. Using mixed tertiary amines for gas sweetening
energy requirement reduction. Journal of Natural Gas Science and
Engineering. 2013; 11: 12-7.</div></li>
<li class="ref"><div id="8">Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT. <a href="https://www.sciencedirect.com/science/article/pii/S1750583609001182#!" target="_blank">Carbon
dioxide capture with concentrated, aqueous piperazine.</a> International Journal
of Greenhouse Gas Control. 2010; 4(2): 119-24. doi: 10.1016/j.ijggc.2009.10.008</div></li>
<li class="ref"><div id="9">Rivas O, Prausnitz J. <a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.690250608" target="_blank">Sweetening of sour natural gases by mixed-solvent
absorption: Solubilities of ethane, carbon dioxide, and hydrogen sulfide in
mixtures of physical and chemical solvents.</a> AIChE Journal. 1979; 25(6): 975-84. doi: 10.1002/aic.690250608</div></li>
<li class="ref"><div id="10">Warudkar SS, Cox KR, Wong MS, Hirasaki GJ. Influence of stripper
operating parameters on the performance of amine absorption systems
for post-combustion carbon capture: Part I. High pressure strippers. International Journal of Greenhouse Gas Control. 2013; 16: 342-50. doi: 10.1016/j.ijggc.2013.01.050</div></li>
<li class="ref"><div id="11">Polasek JC, Bullin JA, Donnelly ST. Alternative flow schemes to reduce
capital and operating costs of amine sweetening units. Energy Processing/
Canada. 1982; 74: 45-50.</div></li>
<li class="ref"><div id="12">Mores P, Rodr&#237;guez N, Scenna N, Mussati S. <a href="https://www.sciencedirect.com/science/article/pii/S1750583612001284#!" target="_blank">CO<sub>2</sub>
 capture in power plants: Minimization of the investment and operating cost of the postcombustion
process using MEA aqueous solution.</a> International Journal of
Greenhouse Gas Control. 2012; 10: 148-63. doi: 10.1016/j.ijggc.2012.06.002</div></li>
<li class="ref"><div id="13">Bae HK, Kim SY, Lee B. <a href="https://link.springer.com/article/10.1007/s11814-010-0446-6" target="_blank">Simulation of CO<sub>2</sub>
 removal in a split-flow gas
sweetening process.</a> Korean J. Chem. Eng. 2011; 28: 643-8. doi: 10.1007/
s11814-010-0446-6</div></li>
<li class="ref"><div id="14">Cousins A, Wardhaugh L, Feron P. <a href="https://www.sciencedirect.com/science/article/pii/S175058361100003X#!" target="_blank">A survey of process flow sheet
modifications for energy efficient CO<sub>2</sub> capture from flue gases using
chemical absorption.</a> International Journal of Greenhouse Gas Control. 2011; 5(4): 605-19. doi: 10.1016/j.ijggc.2011.01.002</div></li>
<li class="ref"><div id="15">Kazemi A, Malayeri M, Shariati A. <a href="https://www.sciencedirect.com/science/article/pii/S1875510014001504#!" target="_blank">Feasibility study, simulation and
economical evaluation of natural gas sweetening processes&#8211;Part 1: A case
study on a low capacity plant in iran.</a> Journal of Natural Gas Science and
Engineering. 2014; 20: 16-22. doi: 10.1016/j.jngse.2014.06.001</div></li>
<li class="ref"><div id="16">Ghanbarabadi H, Khoshandam B. <a href="https://www.sciencedirect.com/science/article/pii/S1875510014004028#!" target="_blank">Simulation and comparison of Sulfinol
solvent performance with Amine solvents in removing sulfur compounds
and acid gases from natural sour gas.</a> Journal of Natural Gas Science and
Engineering. 2015; 22: 415-20. doi: 10.1016/j.jngse.2014.12.024</div></li>
<li class="ref"><div id="17">Nuchitprasittichai A, Cremaschi S. <a href="https://www.sciencedirect.com/science/article/pii/S0098135411001062#!" target="_blank">Optimization of CO<sub>2</sub>
 capture process with
aqueous amines using response surface methodology.</a> Computers & Chemical
Engineering. 2011; 35(8): 1521-31. doi: 10.1016/j.compchemeng.2011.03.016</div></li>
<li class="ref"><div id="18">&#216;i LE, Br&#229;then T, Berg C, Brekne SK, Flatin M, et al. <a href="https://www.sciencedirect.com/science/article/pii/S1876610214008881" target="_blank">Optimization of
configurations for amine based CO<sub>2</sub> absorption using Aspen HYSYS.</a>
Energy Procedia. 2014; 51: 224-33. doi: 10.1016/j.egypro.2014.07.026</div></li>
<li class="ref"><div id="19">Banat F, Younas O, Didarul I. <a href="https://www.sciencedirect.com/science/article/pii/S1875510013000899#!" target="_blank">Energy and exergical dissection of a natural
gas sweetening plant using methyldiethanol amine (MDEA) solution.</a>
Journal of Natural Gas Science and Engineering. 2014; 16: 1-7. doi: 10.1016/j.jngse.2013.10.005</div></li>
<li class="ref"><div id="20">Abdulrahman R, Sebastine I. Effect of lean amine temperature on amine
gas sweetening: case study and simulation. Chemistry and Technology of
Fuels and Oils. 2013; 49: 293-7.</div></li>
<li class="ref"><div id="21">Blanchon le Bouhelec E, Mougin P, Barreau A, Solimando R. <a href="https://pubs.acs.org/doi/abs/10.1021/ef0605706" target="_blank">Rigorous
modeling of the acid gas heat of absorption in alkanolamine solutions.</a>
energy & fuels. 2007; 21(4): 2044-55. doi: 10.1021/ef0605706</div></li>
<li class="ref"><div id="22">Hoff KA, Juliussen O, Falk-Pedersen O, Svendsen HF. <a href="https://pubs.acs.org/doi/abs/10.1021/ie034325a" target="_blank">Modeling and
experimental study of carbon dioxide absorption in aqueous alkanolamine
solutions using a membrane contactor.</a> Industrial & engineering chemistry
research. 2004; 43(16): 4908-21. doi: 10.1021/ie034325a</div></li>
<li class="ref"><div id="23">Homberg OA, Sheldrake CW, Singleton AH. Regeneration of alkanolamine
absorbing solution in gas sweetening processes. Google Patents; 1977.</div></li>
<li class="ref"><div id="24">Kim I, Hoff KA, Hessen ET, Haug-Warberg T, Svendsen HF. <a href="https://www.sciencedirect.com/science/article/pii/S0009250908006866#!" target="_blank">Enthalpy of
absorption of CO<sub>2</sub>
 with alkanolamine solutions predicted from reaction
equilibrium constants.</a> Chemical Engineering Science. 2009; 64(9): 2027-doi: 10.1016/j.ces.2008.12.037</div></li>
<li class="ref"><div id="25">Kohl AL, Nielsen R. Gas purification: Gulf Professional Publishing; 1997.</div></li>
<li class="ref"><div id="26">Maddox RN. Gas and liquid sweetening: JM Campbell for Campbell
Petroleum series; 1974.</div></li>
<li class="ref"><div id="27">Association NGPS, Association GPS, Association GP. Engineering data
book: Suppliers Association; 1957.</div></li>
<li class="ref"><div id="28">Littel R, Versteeg G, Van Swaaij WP. <a href="https://www.sciencedirect.com/science/article/pii/0009250992803198" target="_blank">Kinetics of CO<sub>2</sub>
 with primary and
secondary amines in aqueous solutions &#8212;I.</a> Zwitterion deprotonation kinetics
for DEA and DIPA in aqueous blends of alkanolamines. Chemical engineering
science. 1992; 47(8): 2027-35. doi: 10.1016/0009-2509(92)80319-8</div></li>
<li class="ref"><div id="29">Camacho F, S&#225;nchez S, Pacheco R, Rubia L, Dolores M, et al. Kinetics of the
reaction of pure CO<sub>2</sub>
 with N-methyldiethanolamine in aqueous solutions. International Journal of Chemical Kinetics. 2009; 41(3): 204-14. doi: 10.1002/
kin.20375</div></li>
<li class="ref"><div id="30">Cummings AL, Smith GD, Nelsen DK. Advances in amine reclaiming&#8211;why
there&#700;s no excuse to operate a dirty amine system. Laurance Reid Gas
Conditioning Conference, 2007.</div></li>
<li class="ref"><div id="31">Erik J. Reactions between Carbon Dioxide and Amino Alcohols. III. Diethanolamine. Acta Chemica Scandinavica. 1956; 10: 747-55.</div></li>
<li class="ref"><div id="32">Islam M, Yusoff R, Ali B. Degradation studies of amines and alkanolamines
during CO<sub>2</sub>
 absorption and stripping system. Engineering e-Transaction. (ISSN 1823-6379) 2010; 5: 97-109.</div></li>
<li class="ref"><div id="33">Polasek J, Bullin J. Selecting amines for sweetening units. ENERGY
PROGRESS. 1984; 4: 146-9.</div></li>
<li class="ref"><div id="34">Paul DR, Lloyd DR, Eldridge RB. Carbon dioxide removal from natural gas
by membranes in the presence of heavy hydrocarbons and by Aqueous
Diglycolamine<sup>&#174;</sup>/Morpholine, 2004.</div></li>
<li class="ref"><div id="35">Polasek JC, Inglesias-Silva G, Bullin JA. Using mixed amine solutions for
gas sweetening. Proceedings of the Annual Convention-Gas Processors
Association: Gas Processors Association; 1992. 58.</div></li>
<li class="ref"><div id="36">Spears ML, Hagan KM, Bullin JA, Michalik CJ. Converting to DEA/MDEA
mix ups sweetening capacity. Oil and Gas Journal. 1996; 94: 63-8.</div></li>
<li class="ref"><div id="37">Mohamadirad R, Hamlehdar O, Boor H, Fattahi-Monavar A, Rostami S. <a href="https://www.researchgate.net/publication/279151211_Mixed_Amines_Application_in_Gas_Sweetening_Plants" target="_blank">Mixed amines application in gas sweetening plants.</a> Chemical Engineering
Transactions. 2011; 24: 265-70. doi: 10.3303/CET1124045</div></li>
<li class="ref"><div id="38">Chan CW, Tontiwachwuthikul P. A decision support system for solvent
selection of CO<sub>2</sub>
 separation processes. Energy conversion and management. 1996; 37: 941-6.</div></li>
<li class="ref"><div id="39">Astaria G, Savage DW, Bisio A. Gas treating with chemical solvents, 1983.</div></li>
<li class="ref"><div id="40">Mandal BP, Biswas A, Bandyopadhyay S. <a href="https://www.sciencedirect.com/science/article/pii/S1383586603001394" target="_blank">Selective absorption of H<sub>2</sub>S from
gas streams containing H<sub>2</sub>S and CO<sub>2</sub>
 into aqueous solutions of
N-methyldiethanolamine and 2-amino-2-methyl-1-propanol.</a> Separation
and purification technology. 2004; 35(3): 191-202. doi: 10.1016/S1383-
5866(03)00139-4</div></li>
<li class="ref"><div id="41">Henni A, Tontiwachwuthikul P, Chakma A. <a href="https://pubs.acs.org/doi/abs/10.1021/je050172h" target="_blank">Solubility study of methane
and ethane in promising physical solvents for natural gas sweetening
operations.</a> J. Chem. Eng. Data. 2006; 51(1): 64-7. doi: 10.1021/je050172h</div></li>
<li class="ref"><div id="42">Nassar VL, Bullin JA, Lyddon LG. Solubility of Hydrocarbons in Physical
Solvents.</div></li>
<li class="ref"><div id="43">Zare Aliabad H, Mirzaei S. Removal of CO<sub>2</sub>
 and H<sub>2</sub>S using Aqueous
Alkanolamine Solusions. International Journal of Chemical and Molecular
Engineering. 2009; 3.</div></li>
<li class="ref"><div id="44">Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, et al. <a href="https://www.researchgate.net/publication/264094892_Comparison_of_carbon_dioxide_absorption_in_aqueous_MEA_DEA_TEA_and_AMP_solutions" target="_blank">Comparison of carbon
dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions.</a> Bull
Korean Chem Soc. 2013; 34(3): 783-7. doi: 10.5012/bkcs.2013.34.3.783</div></li>
<li class="ref"><div id="45">Jonassen &#216;, Kim I, Svendsen HF. <a href="https://www.sciencedirect.com/science/article/pii/S187661021402013X#!" target="_blank">Heat of Absorption of Carbon Dioxide (CO<sub>2</sub>
) into Aqueous N-Methyldiethanolamine (MDEA) and N, N-Dimethylmonoethanolamine (DMMEA).</a> Energy Procedia. 2014; 63: 1890-902. doi: 10.1016/j.egypro.2014.11.198</div></li>
</ol>   
</div>  
</div>
</div>
</section>
</div></div>
</div><!--end of row-->
</div><!--end of container-body-->
</div><!--end of content-area-->
<?php include 'includes/jrnfooter.php';?>

Youez - 2016 - github.com/yon3zu
LinuXploit