Madridge
Journal of Novel Drug Research

ISSN: 2641-5232

Image Article

Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple– Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of time under Synchrotron Radiation

Alireza Heidari*

Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

*Corresponding author: Alireza Heidari, California South University, 14731 Comet St. Irvine, CA 92604, USA, Emails: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us

Received: May 26, 2018 Accepted: July 28, 2018 Published: August 2, 2018

Citation: Heidari A. Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Madridge J Nov Drug Res. 2018; 2(1): 68-74. doi: 10.18689/mjndr-1000110

Copyright: © 2018 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Download PDF

Image Article

In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple–Bond Correlation Spectroscopy (HMBC). It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1 and 2) [1-151].

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1 and 2) [1-151].

References

  1. Heidari A. Brown C. Study of Surface Morphological. Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh2O3 ) Nanoparticles. International Journal of Pharmacology. Phytochemistry and Ethnomedicine. 2015; 1: 15-19. doi: 10.18052/www.scipress.com/IJPPE.1.15   
  2. Heidari A. Extraction and Preconcentration of N–Tolyl–Sulfonyl–Phosphoramid– Saeure–Dichlorid as an Anti–Cancer Drug from Plants. A Pharmacognosy Study. J Pharmacogn Nat Prod. 2016; 2(103). doi: 10.4172/2472-0992.1000e103   
  3. Heidari A. A Thermodynamic Study on Hydration and Dehydration of DNA and RNA–Amphiphile Complexes. J Bioeng Biomed Sci S. 2016; 006. doi: 10.4172/2155-9538.S3-006   
  4. Heidari A. Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3 ) Nanoparticles. J Biotechnol Biomater. 2016; 6(125) 2016. doi: 10.4172/2155-952X.1000e125   
  5. Heidari A. Biomedical Study of Cancer Cells DNA Therapy Using Laser Irradiations at Presence of Intelligent Nanoparticles. J Biomedical Sci. 2016; 5(2). doi: 10.4172/2254-609X.100023   
  6. Heidari A. Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications. J Pharmacokinet Exp Ther. 2016; 1(005). doi: 10.4172/jpet.1000e005   
  7. Heidari A. Brown C. Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cumene. International Journal of Advanced Chemistry. 2016; 4 (1): 5-9. doi: 10.14419/ijac.v4i1.6080   
  8. Heidari A. Coplanarity and Collinearity of 4'–Dinonyl–2.2'–Bithiazole in One Domain of Bleomycin and Pingyangmycin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti–Tumor Nano Drug. Int J Drug Dev & Res. 2016; 8: 007-008.   
  9. Heidari A. Nanotechnology in Preparation of Semipermeable Polymers. J Adv Chem Eng. 2016; 6 (157).   
  10. Heidari A. DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives. Biomedical Data Mining. 2016; 5(102). doi: 10.4172/2090-4924.1000e102   
  11. Heidari A. The Impact of High Resolution Imaging on Diagnosis. Int J Clin Med Imaging. 2016; 39(6): 1000-101. doi: 10.4172/2376-0249.1000e101   
  12. Heidari A. Advances in Logic. Operations and Computational Mathematics. J Appl Computat Math. 2016; 5(5).   
  13. Heidari A. Mathematical Equations in Predicting Physical Behavior. J Appl Computat Math. 2016; 5(5). doi: 10.4172/2168-9679.1000e145   
  14. Heidari A. Chemotherapy a Last Resort for Cancer Treatment. Chemo Open Access. 2016; 5(4). doi: 10.4172/2167-7700.1000e130   
  15. Heidari A. A Novel Approach to Biology. Electronic J Biol. 2016; 12(4).   
  16. Heidari A. Innovative Biomedical Equipment's for Diagnosis and Treatment. J Bioengineer & Biomedical Sci. 2016; 6(2).   
  17. Heidari A. Study of Synthesis. Pharmacokinetics. Pharmacodynamics. Dosing. Stability. Safety and Efficacy of Olympiadane Nanomolecules as Agent for Cancer Enzymotherapy. Immunotherapy. Chemotherapy. Radiotherapy. Hormone Therapy and Targeted Therapy under Synchrotorn Radiation. J Dev Drugs. 2017; 6(154). doi: 10.4172/2329-6631.1000e154   
  18. Heidari A. Opinion on Computational Fluid Dynamics(CFD)Technique. Fluid Mech Open Acc. 2017; 4(157). doi: 10.4172/2476-2296.1000157   
  19. Heidari A. Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human Cancer Cells' Metabolism and Metabolomics: New Discoveries. Unique Features Inform New Therapeutic Opportunities. Biotech's Bumpy Road to the Market and Elucidating the Biochemical Programs that Support Cancer Initiation and Progression. J Biol Med Science. 2017; 1(103).   
  20. Heidari A. Sedative. Analgesic and Ultrasound–Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal Endoscopic Procedure. Nano Drug–Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity. Res Rep Gastroenterol. 2017; 1(1).   
  21. Gobato R, Heidari A. Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi. Science Journal of Analytical Chemistry. 2017; 5(6): 76-85. doi: 10.11648/j.ajqcms.20170203.12   
  22. Heidari A. Potency of Human Interferon β–1a and Human Interferon β–1b in Enzymotherapy. Immunotherapy. Chemotherapy. Radiotherapy. Hormone Therapy and Targeted Therapy of Encephalomyelitis Disseminate/Multiple Sclerosis (MS) and Hepatitis A. B. C. D. E. F and G Virus Enter and Targets Liver Cells. J Proteomics Enzymol. 2017; 6(1). doi: 10.4172/2470-1289.1000e109   
  23. Heidari A. Electron Phenomenological Spectroscopy. Electron Paramagnetic Resonance (EPR) Spectroscopy and Electron Spin Resonance (ESR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Austin J Anal Pharm Chem. 2017; 4(3): 1091.   
  24. Heidari A. A Consensus and Prospective Study on Restoring Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles–Free Interval Using Synchrotron Radiation Therapy as Antibody–Drug Conjugate for the Treatment of Limited–Stage Small Cell Diverse Epithelial Cancers. Cancer Clin Res Rep. 2017; 1(2): e001.   
  25. Heidari A. J-Spectroscopy. Exchange Spectroscopy (EXSY). Nuclear Overhauser Effect Spectroscopy (NOESY) and Total Correlation Spectroscopy (TOCSY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Eng Sci J. 2017; 1(2): 006-013.   
  26. Heidari A. Two-Dimensional Infrared Correlation Spectroscopy. Linear Two–Dimensional Infrared Spectroscopy and Non–Linear Two– Dimensional Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. J Mater Sci Nanotechnol. 2018; 6(1): 101.   
  27. Heidari A. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 2018; 3(1): 1011.   
  28. Heidari A. Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Open Access J Trans Med Res. 2018; 2(1): 00026-00032. doi: 10.15406/ oajtmr.2018.02.00026   
  29. Gobato MRR, Gobato R, Heidari A. Planting of Jaboticaba Trees for Landscape Repair of Degraded Area. Landscape Architecture and Regional Planning. 2018; 3(1): 1-9. doi: 10.11648/j.larp.20180301.11   
  30. Heidari A. X–Ray Diffraction (XRD). Powder X–Ray Diffraction (PXRD) and Energy–Dispersive X–Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. J Oncol Res. 2018; 2(1): 1-14.   
  31. Heidari A. Thermal Spectroscopy. Photothermal Spectroscopy. Thermal Microspectroscopy. Photothermal Microspectroscopy. Thermal Macrospectroscopy and Photothermal Macrospectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. SM J Biometrics Biostat. 2018; 3(1): 1024.   
  32. Heidari A. Nuclear Resonance Vibrational Spectroscopy (NRVS). Nuclear Inelastic Scattering Spectroscopy (NISS). Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X–Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Int J Bioorg Chem Mol Biol. 2018; 6(1e): 1-5. Doi: 10.19070/2332-2756-180008e   
  33. Heidari A. Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Organic & Medicinal Chem IJ. 2018; 6(1): 555676. doi: 10.15406/ oajtmr.2018.02.00026   
  34. Heidari A. Pump–Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Adv Material Sci Engg. 2018; 2 (1): 1-7.   
  35. Heidari A. An Investigation of the Role of DNA as Molecular Computers: A Computational Study on theHamiltonian Path Problem. International Journal of Scientific & Engineering Research. 2014; 5(1) 1884-1889.