Toxicity of Silver Nanoparticles

Saqib N U and Rahim M*
School of Chemical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia

Article Info
*Corresponding author: Muhammad Rahim
School of Chemical Sciences
Universiti Sains Malaysia
Minden
Pulau Pinang
Malaysia
Tel: +60104625195
E-mail: kpk566@gmail.com

Received: June 23, 2016
Accepted: July 18, 2016
Published: July 23, 2016

doi: 10.18689/mjnn-1000103

Copyright: © 2016 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To the Editor

Keywords: Toxicity; Silver nanoparticles; Environmental and health hazards; Antibacterial.

Silver nanoparticles (AgNP) have been extensively used for packaging and storage of food products to enhance their shelf life [1]. Likewise, AgNP are increasingly used in various fields of pharmaceutical and biomedical sciences [2]. In addition, AgNP are good antibacterial and antiviral agents [3], and also used in the treatment of infection in burns, open wounds, chronic ulcer [4], trophic sores, eczema, and acne [5]. The use of silver based resin composites have been reported for the filling and coating of dental and medical devices. Similarly, the use of AgNP as an antimicrobial agent in toothpastes, shampoos, air sanitizer sprays, detergents and soaps has been reported previously [6]. AgNP are also investigated for its unique properties in catalysis, chemical sensing [7], biosensing, photonics and electronics [8], biomedical imaging, clinical diagnostics and therapeutics [9]. Pugazhendhi et al. (2016) reported that Dioscoreaalata mediated AgNP possess excellent antimicrobial activity by using agar well diffusion assay method [10]. Recently, Borrego et al. (2016) have been tested the potential antiviral activity of AgNP against Rift Valley fever virus (RVFV) by using both in vitro and in vivo (mice) studies. They claimed that AgNP has the ability to control the infectivity of RVFV [11]. Number of research papers have been published in 2016 reveal the in vivo evaluation of AgNP against Rhizoctonia solani [12], Pseudomonas aeruginosa [13], lungs cancer cells [14], Bacillus subtilis [15], Endodontic Treatments [15] etc.

However, the toxicity of AgNP are reported by many researchers. The investigations of Mahmoudi and Serpooshan (2012) stated that the AgNP are highly toxic to healthy/normal cells [16]. Similarly, Bharadwaj Punita (2012) has been reported that AgNP are highly toxic to mammalian cells, brain cells, liver cells and stem cells. Furthermore, they also described that the nano-antimicrobial agents are a big threat to the whole biodiversity [17]. The previous studies also revealed that the zero-valent AgNP can generate highly reactive oxygen species (ROS) such as super oxide and hydroxyl radical, which can lead to oxidative stress [18,19]. Whereas, the ROS can cause the oxidative damage of biomolecules and DNA [20].

Due to bactericidal activities, AgNP have been extensively used in personal care products, home appliances, laundry additives, paints, food storage containers and food supplements. The unique properties of nanoparticles such as relatively high surface area, greater mobility and high chemical reactivity can result in unpresented environmental and public health hazards [21].

The aforementioned results clearly illustrated that before the use of AgNP against cancer cells and/or microbes, their cytotoxicity (against healthy cells) should be evaluated. As such, further studies are needed to fully evaluate its potential environmental and health hazards.