International Conference on ge Geology & Earth Science

May 2-4, 2018 Rome, Italy

Evaluation for the scCO, Sealing Capacity of the Mudstone in the Janggi Basin, Korea

Jeongpil An¹, Taehyoung Kim¹, Jinkyun Lee¹, Minhee Lee¹, Sookyun Wang² and Seon-Ok Kim²
¹Department of Environmental Geosciences, Pukyong National University, South Korea
²Department of Energy Resources Engineering, Pukyong National University, South Korea

The $scCO_2$ (supercritical CO_2) sealing capacity of the mudstone as a cap-rock in the Janggi basin, Korea was evaluated, measuring the initial $scCO_2$ injection pressure. The mudstone core (4.2 cm in diameter and 5 cm in length) was fixed in a stainless steel cell covered with a heating jacket to maintain at 50 °C, and then was saturated with distilled water at 100 bar to simulate the $scCO_2$ storage conditions under the subsurface. The $scCO_2$ was contacted to the surface of the mudstone core in the cell using a syringe pump at the range of 100 - 250 bar until the $scCO_2$ began to penetrate into the water-saturated mudstone core, and the initial injection pressure of $scCO_2$ into the mudstone was measured. From the experiment, the initial $scCO_2$ injection pressure of the mudstone core was 240 bar (ΔP =140 bar), which was much higher than that of the tuff in Janggi basin (ΔP =15 bar), suggesting that the mudstone in Janggi basin was more suitable than the tuff to prevent the $scCO_2$ leakage from the $scCO_2$ storage rock. The amount of the $scCO_2$ replacing water in pore spaces of the mudstone core was measured to estimate the $scCO_2$ storage capacity of the mudstone. After more than 3 pore volumes of the $scCO_2$ was flushed out from the mudstone core, the $scCO_2$ storage ratio was calculated from the amount of water drained out from the mudstone core. The conglomerate was considered as a provisional the $scCO_2$ storage rock in Janggi basin, and its average $scCO_2$ storage ratio was measured as 31.21%. In this study, the average $scCO_2$ storage ratio of the mudstonewas calculated as 11.24%, which was lower than that of the conglomerate in Janggi basin. By considering the high initial $scCO_2$ injection pressure and the lows $scCO_2$ storage ratio, the mudstone in Janggi basin could be the successful cap-rock to shield the $scCO_2$ leakage from the $scCO_2$ storage rock in the Korea.