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Abstract
Modification of Newton’s gravitational potential by an additional term containing 

the cosmological Lambda-term leads to the need to consider antigravity, the action of 
which at large distances between bodies is comparable to the gravitational force, and 
even prevails over it. It was found that the influence of the quadratic antigravitational 
force does not lead to the disintegration of the bound gravitational system, but 
precession of orbits occurs and the laws of motion along geodesics change. For particles 
with relativistic velocities, the regions of achievable motion and the shape of orbits 
become more complex and can be expressed in ultraelliptic integrals (as well as the 
motion of a test body in a two-center system).
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Introduction
The generalized Newtonian 2–particle potential  is 

a convex non-positive function whose graph lies in the IV-th quadrant on the  
coordinate plane (r, UGN), with a maximum at r = rc, equal to 

 . The force of 
interaction between two gravitating objects of mass  M (formally the center of attraction)
and m (test body, by default M ≥ m) is: F=-gMm/r2+Λc2mr/3, and its value is negative 
(F<0, prevailing attraction between bodies) for r < rc and positive (F>0, repulsion) for 
r >rc. In the latter case, a (generally speaking, asymmetrical) gravitational dipole [M, m] 
is formed [1].

The point r = rc plays a special role in the dynamics of the dipole gravitational 
system; physically this is due to the stationarity of the processes in its vicinity due to the 
absence of a force action  on the particles of the system 
located there, so that the structures formed earlier will be in a state of dynamic 
equilibrium in this vicinity for a fairly long time — this is a kind of analogue of the 
“Lagrange point” of a three-body system (it can be expected that some metastable set 
of particles will form at this point).

The motion of two material points obeying the modified Newton law of gravity is 
one-dimensional only in the simplest case (which corresponds to the variant 

 For motion in the central field, one should consider 
an additional variable associated with rotation, and introduce an effective potential 

 — the component of the momentum of particle 
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m moving in the generalized gravitational potential, associated 
with its angular momentum relative to the “center”). 
Depending on the value of , the motion of particle m will 
be either finite–infinite (three turning points, of which two are 
libration points and one stopping point), or simply infinite 
(one stopping point). It is easy to establish the critical value of 
the centrifugal momentum , corresponding to the 
disappearance of the bound state  
(degeneration of the extremum/minimum of the effective 

potential to the inflection point):  is a root 
of the equation  The 
resulting system of algebraic equations for the unknowns 

, subject to obvious physically determined assumptions 
(two real roots of the extremum equation, with only one root 
being positive), uniquely determines the moment of merging 
of the turning points of the librational motion into one (the 
inflection point of the effective potential).

Generalized Keplerian Dynamics
An explicit form of the dependence of time on coordinates: 

where  — elliptic integral 3rd kind (degenerate) in 
the Legendre form; for  the solution is also obtained 
in a similar form, or in the form of a linear combination of 
elliptic integrals  (of the 3rd kind) in the Weierstrass form. 
The conversion of the above dependence to the form  
is analytically possible only in principle.

The dependence  is expressed explicitly through 
a (rather cumbersome) composition of incomplete elliptic 
integrals of the 1st and 3rd kind. Since this form of the 
trajectory is very important, we present a method for obtaining 
it. Let us introduce an intermediate variable , then we 
can write the following dependence for the trajectory 
(obtained by the Hamilton–Jacobi method): 

where  are the roots of the equation .

Assuming that the value , we can obtain the influence 
of the oscillatory perturbation  on the Keplerian 
orbits that correspond to the case of gravity corresponding to 
pure attraction. To do this, we first move to the “action–angle” 
variables :

where  are the largest and smallest values, 
respectively ,

Next, we move on to the canonical elements of the 
Keplerian orbit , expressed through the 
Delaunay variables  and the quantities 

; they can be related to Napier’s spherical coordinates, 
resulting in 

For the central disturbing force  we have:

The secular part  of the perturbing function  
we have 

differential equations for secular perturbations of variables 

Under the perturbation of the central force  the 
Keplerian ellipse retains its size and shape on average over 
the period. It experiences as a whole only slowly changing 
motion:  . According 
to the value of the Delaunay variable , which means 
that the line of apsides of the Kepler ellipse (the direction to 
the perihelion) undergoes slow rotations with an angular 
velocity of , while , . Since the 
latter quantities are related to the orbital inclination, this 
means that the central perturbing force leaves the motion flat 
(in the Laplace plane). The energy of the perturbed motion 

Let us consider the motion of a test body P (mass m) in 
the gravitational field of two fixed centers  of mass 

. In this case, it is advisable to 
place the origin of coordinates between tt. 

 and introduce elliptical coordinates 
. The integral of living forces 
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then takes the form 

and the potential (force function): 

The conditions of Liouville’s theorem are satisfied, since 
the integral of living forces corresponds in form to the 
conditions of the theorem: ,  
and the potential, which must have the form 

, is represented 
as: 

Therefore, the Lagrange differential equations in this case 
are integrated in quadratures, having the form 

where  — constants. In 
our case we get 

in this case, how does it happen that  can be 
represented as four-periodic functions of two arguments.

Conclusions
Integration up to quadratures of these equations can, for 

example, demonstrate to us the behavioral features of the 
Magellanic Clouds — satellite galaxies of our Milky Way 
Galaxy [2], also located in the zone of influence of the 
Andromeda Nebula, or our local cluster as an object of 
comparatively small mass in the field of the gravitational 
dipole of the Shapley and Repeller superclusters.
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