

International Journal of Cosmology, Astronomy and Astrophysics

Mini Review Article

Open Access

Zero Vector and AT Math

Paul T E Cusack*

BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada

Article Info

*Corresponding author: Paul T E Cusack BScE, DULE 23 Park Ave Saint John, NB E2J 1R2 Canada Tel: +1-506-652-6350 E-mail: St-michael@hotmail.com

Received: November 28, 2018 Accepted: December 20, 2018 Published: January 17, 2019

Citation: Cusack PTE. Zero Vector and AT Math. *Int J Cosmol Astron Astrophys.* 2019; 1(1): 16-17. doi: 10.18689/ijcaa-1000106

Copyright: © 2019 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published by Madridge Publishers

Abstract

From Linear Algebra we have a vector called the aero vector. It has interesting properties that lead to fundamental universal constants: the golden mean parabola; the gravitational constant, the super force and moment.

Keywords: Zero Vector; Astrotheology; Linear Algebra

Introduction

The Zero Vector (0, 0, 0....0) is an interesting vector. It is perpendicular to every other vector and to itself. From this, we can derive the golden mean parabola; the gravitational constant, the super force and moment. We begin with the aero vector [1-3].

Given that:

```
{0} \neg \lambda \{a_1, a_2, ..., a_\infty\}
{0} \neg \{0\}
Then:
```

```
\begin{array}{l} \{0\} = \sum \lambda \{a_{1}, a_{2'}, ..., a_{\infty}\} \\ = \lambda \int \{a_{1}, a_{2'}, ..., a_{\infty}\} \\ = \lambda \infty \\ \sum \lambda \{a_{1}, a_{2'}, ..., a_{\infty}\} = \cos (\pi/2) = 0 \\ [\cos \theta]' = \sin \theta \\ \sin (\pi/2) = 1 \\ \cos (\pi/2) \neg \int \sin (\pi/2) = \int 1 + \mathbb{C} 1 \end{array}
```

Now,

```
\sum \lambda \{a_{1}, a_{2}, ..., a_{\omega}\} = 0

\rightarrow \lambda = 0 \text{ or } \{a_{1}, a_{2}, ..., a_{\omega}\} = 0

\sum \lambda \{a_{1}, a_{2}, ..., a_{\omega}\} = \int 1 + \mathbb{C} 1

\lambda \neq 0 \text{ or } \lambda \{a_{1}, a_{2}, ..., a_{\omega}\} = \int 1

Let y = y'

\int A = 1

a^{2}/2 = 1

A = \sqrt{2}

And,

\int A = \int 1

\frac{1}{2}A^{2} = A + \mathbb{C} 2

A^{2} - A - 1 = 0
```

Golden Mean Parabola

 $A^2/2=A+C1$ $A^2 = 2A$ A=2 A={2,0,0,....0} $L=\sqrt{[a_1^2+a_2^2, a_{\infty}^2]}$ a₁=2 Circ.=Area' $2\pi R = \pi R^2$ R=2 =a =dM/dt $a^2+b^2=R^2$ $\sqrt{2^2} + \sqrt{2^2} = 2^2$ $\int (a^2 + b^2) = R^2$ a³/3+b³/3=R³/3

Conclusion

In the aero vector we see a convergence on a solution that gives us the universal constants and equations. It is the oddities that belie the truth about math and physics.

References

- 1. Cusack P. Astro-Theology, Cusacks Universe. J. Phys. Math. 2016; 7(2): 8.
- Steward I. In Pursuit of the Unknown. NY 2012. 2.
- Axler S. Linear Algebra Done Right. Springer. 2015. 3.

Pythagoras & Equation of a Circle

Consider:

 $a^{3}/3 + b^{3}/3 + 2^{3}/3$ a=b $2a^{3}/3 = 8/3$ G(8)=S.F. 2a³=8 a=∛4=1.587 =1-sin 1 =Moment

Because the Zero Vector Space is finite, the universe is finite.