Structure of the Universe

Paul T E Cusack*
BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada

Abstract

In this paper, we consider how the universe may have come to exhibit the structure that it does. Viz uniform distribution on mass throughout and an ellipsoid shape. This finding doesn’t agree with previous theories which have the universe as expanding. In fact, the universe is being compressed and mass results.

Keywords: Mass; Magnetic Force; Ellipsoid; Universe

Introduction

In this brief paper, we examine why the universe has mass evenly distributed or whey it is uniform. We consider also why mass terminates at 118 elements. And finally, we consider why the universe may be shaped as an ellipsoid [1].

Uniformity Distributed Mass

The structure of the universe is said to be rather uniform throughout except for black holes or the like. It is much like raindrops on the surface of a glass window. The S.F. (Superfroce) provides for enough energy to allow for the mass of the periodic table of the elements. Space is formed and the universal moment is embedded into the very structure of the universe (Figure 1).

\[F = \frac{G M_1 M_2}{R^2} \]

\[S.F. = \text{SuperForce} = \frac{8}{3} \]

Let \(M_1 = 1 \)
FR²/[Menting2] = 6.67
R²/M = 3998 ~ 0.400 ~ Re
R²/4.486 = 402
R² = 180
R = 0.1342
R = 1 - 0.8667
= 0.1334
= space
4.482/2 (1/√2) = 1583
= Moment
= Mom.
= 1 - sin 1

Magnetic Forces and Mass

When an experimenter pushes two magnets of like poles together, there is resistance up to a point. Then the resistance is overcome and there is no opposing forces remaining in the bars. It is like that with the universe too. When the resistance of energy being squeezed in to mass is overcome, mass results stored energy (Figure 2).

\[
F = Ma
\]
\[
F = 8/3
\]
Let \(v = c = 2.9979 \times 3.0 \)
\(a = 1/\sqrt{2} \)
Let M = 1
Mad/t = 8
M(1/√2)3 = 8
1/(8 √2)(3) = 1/M
M1/M = 2.65 = S.F
265 = 1/4.482 x
= 118.77 = Mass of Periodic Table of the Elements.
F = Ma

\[
(4,482)(1/\sqrt{2})
\]
= 3.169
= π
F = 8/3 = π
8 = 3π
3π/8 = 118.84 = Mass

Ellipsoid Universe

The Ellipsoid Universe results from the gravitational forces (Figures 3 and 4). We use the equation for an ellipsoid to yield the gravitational constant.

\[
F = Ma
\]

Figure 2. Mass Created by Squeezing Energy

Figure 3. The Ellipsoid Universe takes its shape because of Gravity

\[
66 \times 24 \times 3 = 1584 = 1 - sin 1 = Mom.
\]
\[
\sqrt{1^2 + 0^2 + 22^2} = 23.4 = \ln{\pi} = \ln{t}
\]
y = y'
y = ln t
y' = 1/t = E

Figure 4. Cross section of the Ellipsoid Universe with a uniform load on the exterior

\[
d\theta/dt = d\theta/ds \text{ where } t = s
\]
π/2/8 = π/16 = 196.3 = oo = 19.63%
π/2/22 = 71.4%
ln (1/8) = ln (0.125) =
0.125 = e^x
x = ln 0.25
x = 2.08

0.208 x 19.63 = 408.3 \sim \text{Re}

0.208 x 71.4\% = 148 \sim 1.5 \text{ Mass Gap}

(1.5 x 66) + (402 x 24) = 1 \text{ Ellipsoid}

Ellipsoid

\[\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1 \]

\[x = s = \sqrt[3]{\frac{4}{3}} \]

This reduces to:

\[\frac{x^2}{24} + \frac{y^2}{66} = Lx\% = 1 \]

\[4356x^2 + 576y^2 = 576(4356) = 250.9 = \text{Period T} \]

\[T = \frac{1}{t} = E \]

3356 \frac{1}{E^2} - \frac{1}{E} = E - E^2

This reduces to \(E^4 - E^3 - E + 3356 = 0\)

Let \(E = 1\)

\(-1 + 0.3356 = 0.664 \sim G = 6.67\)

Conclusion

We see that the universe's shape and mass distribution are determined by AT Math considerations.

References