Applying Reactivation Tendency Analysis and Mohr-space to Evaluate Shear Strength Decrease and Anisotropy with Pre-existing Weakness(es) under Uniform Stress State

Hengmao Tong*
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

Abstract

Understanding the mechanical controls on shear strength decrease due to pre-existing weakness is a fundamental problem in tectonic studies. In this study, by applying reactivation tendency analysis theory, a theoretical framework and defined Shear-strength Coefficient (f_d) are developed for evaluating the shear-strength decrease and anisotropies due to the presence of preexisting weakness(es). The proposed study managed to overcome the restrictions of previous studies assumption that a pre-existing weakness plane contains the intermediate stress (σ_2) and vertical or horizontal orientations of principal stresses (Andersonian stress state). A new graphical technique (Mohr-space) was utilized to predict the shear-strength decrease and anisotropies caused by preexisting weakness(es). The Mohr-space technique made easier to visualize the state of stress and results of shear strength changes and able to build the quantitative and intuitive relationship between Shear-strength Coefficient (f_d) and weakness relative-orientation (θ', ϕ), weakness mechanical properties (C_w and μ_w) and relative σ_2 ($\sigma_2 - \sigma_1$) in any uniform tri-axial stress state. In this study, Shear-strength decrease and anisotropies of a rock sample are evaluated theoretically, and shear strength properties and deformation characteristics of a geological body with multiple pre-existing weaknesses are analyzed and predicted.

Keywords: Shear strength; preexisting weakness; reactivation tendency; Mohr-space; sandbox experiment.

Introduction

It is well documented that pre-existing weaknesses (fracture planes or faults, layering, fabrics etc.) can lead to decrease of shear strength and strength anisotropies [1-3], and the potential strength anisotropy created by pre-existing weakness is considerable [4]. Ranalli (1990) [5] proposed a unified quantitative model to evaluate strength anisotropies by the pre-existing weakness in terms of the three tectonic faulting regimes when the weakness plane contains the intermediate stress (σ_2). However, to our knowledge strength anisotropies evaluation with pre-existing weakness is limited to two-dimensional cases (weakness plane containing σ_2) before slip-tendency theory was proposed [6]. However, strength anisotropies evaluation with slip-tendency [7] is confined to the qualitative analysis only. In addition, there is also some limitation in slip-tendency theory, i.e. the principal stresses are oriented either vertically or horizontally, and the cohesive strength of all pre-existing weakness is neglected [6]. However,
principal stress direction may depart significantly from vertical and horizontal with depth in the upper crust [8-9]. Furthermore, some weakness zones may possess cohesive strength, particularly in cemented faults, and properties of weaknesses may vary [4]. For example, Sibson (1974) [10] showed that cementation of a fault zone can create 1.0-MPa cohesive strength or more. In this study, shear-strength Coefficient \(f_a \) is defined, and Reactivation Tendency analysis theory [11], and Mohr-space [12] are applied to evaluate strength decrease and anisotropies due to the presence of pre-existing weaknesses with arbitrary azimuth in any uniform tri-axial stress state. Strength decrease and anisotropies caused by weakness may be intuitively simplified and quantitatively analyzed and evaluated with Mohr space.

Mohr-space, pole \((\sigma_n, \tau_n)\) of any oriented plane in tri-axial stress state

Mohr diagrams, which was introduced by Otto Mohr (1882), is one of the most used and useful tools in structural geology [13], and has been used extensively in mechanical problems, such as stress analysis, failure envelopes, fractures opening and reactivation [14] [15] [16] [17]. Although real three-dimensional Mohr diagrams do exist for any tri-axial stress state [13], Mohr-diagram is usually considered to be two-dimensional [13], which is well known as Mohr-circles. Mohr-cyclides, which can be used to represent any second rank tensor (including stress tensor) was introduced by Coelho and Passchier (2008) [13]. However, the stress components \((\sigma_n, \tau_n)\) of any given plane are the most important, and the general diagrams of Mohr-cyclides are not so convenient to be used and prepared. In contrast, the Mohr space, which was proposed by Tong and Yin (2011) [11] can be used to express the normal stress and shear stress of a plane with an arbitrary azimuth in an arbitrary three-dimensional stress state.

In any given stress state, the pole \((\sigma_n, \tau_n)\) of any plane (i.e. pre-existing weakness plane, defined by dip direction \(\theta\) and dip angle \(\phi\)) is either located on the three Mohr-circles (i.e. \(P_1\) on large Mohr circle \(\sigma_n-\sigma_3\) and \(P_2\) and \(P_3\) on small Mohr circles \(\sigma_n-\sigma_2\) and \(\sigma_n-\sigma_1\), respectively, Figure 1) or in the area (grey area in Figure 1) between large Mohr-circle and two small Mohr-circles (i.e. \(P_4\) in Figure 2) in \(\sigma_n-\tau_n\) coordinate system [2,18]. There is one to one correspondence relationship between any plane and its pole \((\sigma_n, \tau_n)\) in \(\sigma_n-\tau_n\) coordinate system. This space (i.e. the three Mohr-circles and the area between them) is called Mohr-space [11]. With the contour lines (pink and green dotted lines in Figure 2) of plane angles (pseudo-dip direction \(\theta\) and pseudo-dip angle \(\phi\), \(\phi = \alpha + 90^\circ\), where \(\alpha\) is the angle between the plane and the intersection line of the plane and \(\sigma_2-\sigma_3\) plane; \(\theta\) the angle between the plane and \(\sigma_2-\sigma_1\) plane), the pole of the plane can be found in the Mohr-space. The relationship between \(\theta, \phi, \theta, \phi\) and \(\theta, \phi\) can be determined with transformation of coordinates [11], and the contour lines of angles can be compiled with equation (1) [11].

\[
\sigma_n = \sigma_1 \cos^2 \phi' + \sigma_2 \sin^2 \phi' \cos^2 \theta' + \sigma_3 \sin^2 \phi' \sin^2 \theta'
\]

\[
\tau_n = [\sigma_1 \cos^2 \phi' + \sigma_2 \sin^2 \phi' \cos^2 \theta' + \sigma_3 \sin^2 \phi' \sin^2 \theta' - \sigma_n]^2
\]

Thus, by applying Mohr-space, normal stress \((\sigma_n)\) and shear stress \((\tau_n)\) of any plane can be conveniently and intuitively determined, and the changes of normal and shear stresses with plane relative-orientation \((\theta',\phi')\) can be easily analyzed.

Reactivation Tendency Factor and its expressions in Mohr-space

Reactivation Tendency Factor \(f_a \) is defined, and Reactivation Tendency analysis theory [11], and Mohr-space [12] are applied to evaluate strength decrease and anisotropies due to the presence of pre-existing weaknesses with arbitrary azimuth in any uniform tri-axial stress state. Strength decrease and anisotropies caused by weakness may be intuitively simplified and quantitatively analyzed and evaluated with Mohr space.

Figure 1. Diagram of three-axes stress Mohr circles. Planes parallel to \(\sigma_n\) (i.e. \(P_1\)) constitute large Mohr circle \(\sigma_n-\sigma_3\), planes parallel to \(\sigma_1\) (i.e. \(P_2\)) or \(\sigma_2\) (i.e. \(P_3\)) constitute small Mohr circle \(\sigma_n-\sigma_2\) and \(\sigma_n-\sigma_1\) respectively; the oblique planes (i.e. \(P_4\)) is located in the area (grey area) between large Mohr-circle and two small Mohr-circles.

Figure 2. Diagram of Mohr space for the Reactivation Tendency Factor of a pre-existing weakness in critical stress state of Coulomb-Mohr rupturing. Green dash line is contour of \(\theta\), while pink dash line is contour of \(\alpha\) (same is used in Figures 4, 5, 6, 8). A and a': Coulomb-Mohr rupture envelope lines, \(b\) and \(b\)': frictional strength lines of weakness. The striped yellow area is where weakness planes can be reactivated, while the other yellow area is where weakness can not be reactivated. Blue point \(P(\sigma_n, \tau_n)\) represents the pole of a weakness surface with given orientation, \(\tau^{\alpha}_{\ast}\) is the critical shear stress of corresponding pre-existing weakness; Reactivation Tendency Factor \(f_a = \frac{\tau_n}{C_n + \mu_n \sigma_n} \) is on the "weakness reactivation lines" and \(f_a(P_1) = 1.0, P_2 \) locates outside of the two "weakness reactivation lines" and \(f_a(P_3) > 1.0 \), \(P_3 \) locates inside of the two "weakness reactivation lines" and \(f_a(P_3) < 1.0 \). \(C_n, \mu_n \) are cohesive value of rock and weakness, respectively.
of weakness plane, respectively), which is extended from Slipp-tendency [6] and is used to evaluate the reaction tendency likelihood of pre-existing weakness, is proposed by Tong and Yin[11] (2011). Reactivation Tendency Factor (f_a) is determined by its relative-orientation (θ',φ'), mechanical properties (C_w, μ_w) of the weak plane, and the stress tensor. f_a=1.0 shows that the pre-existing weakness is in critical state of reactivation; when f_a>1, it has reactivated and when f_a<1, it is in a stable state. The weaknesses, which f_a≥1.0 in the critical stress state of Coulomb rupture, will reactivate one by one in progressive deformation according to their f_a value order.

Applying Mohr-space, f_a can be intuitively expressed according to the following steps. (1) The lines τ_w = ±(C_w + μ_wσ_n) are two symmetrical straight lines (when μ_w is a constant) or curved lines (b and b' in Figure 2, when μ_w is variable) in σ_n-τ_w coordinate system, which were called “weakness reaction reactivation lines” [19] or “shear strength line of weakness” [11], where (0, C_w) is the starting point, μ_w is the slope of the line. If C_w = 0 (weakness without cohesion), the line cross the point of origin. (2) The pole (σ_n, τ_n) of a weakness plane (P in Figure 2) can be easily plotted in Mohr-space according to its relative-orientation (θ and φ) and its σ_n, τ_w can be intuitively determined (Figure 2). As such, f_a (τ_a/τ_n) of the weakness plane can be easily and intuitively determined (PP_a/PP_r in Figure 2). (3) When the pole of the weakness plane is on its “weakness reactivation line” (P, in Figure 2), f_a=1.0 and the pre-existing weakness is in the critical state of reactivation. However, when the pole is located outside the two “weakness reactivation lines” (striped yellow area in Figure 2, i.e. P), f_a>1.0 and the weakness plane has reactivated. When the pole is located inside the two weakness reactivation lines (yellow area without stripes in Figure 2, i.e. P), f_a<1 indicating that the plane is in a stable state.

The definition of Shear-strength coefficient and its relationship to Reaction Tendency Factor of pre-existing weakness

As a weakness plane may be reactivated when stress is below Coulomb rupturing stress state, a pre-existing weakness will lead to decrease in shear strength [1] [2] [7]. However, the weakness with f_a<1.0 will not reactivate at critical stress of Coulomb rupture [11] according to Reaction Tendency analysis theory. This means that not all weaknesses planes will lead to decrease in shear strength. Therefore, in the following shear strength analysis, we only consider weaknesses with f_a≥1.0.

Consider a weakness plane (P_w) with a normal n and its reactivation tendency factor f_a≥1.0 at critical uniform stress state (σ_n, σ_w, and σ_3) of Coulomb rupture (Figure 3). P_w has been reactivated at critical state of Coulomb rupture [11], and its pole in Mohr-space is (σ_n, τ_n) (Point A in Figure 3). With the same normal stress σ_n, P_w will be the critical state of reactivation when its shear stress is τ_a (Point B in Figure 3, σ_w, σ_3, σ_a are the three principal stresses) and τ_a = τ_w. The large Mohr circle (σ_3-σ_1) circle of critical stress state of weakness reactivation is smaller than the σ_n-σ_3 Mohr circle of critical stress state of Coulomb rupture (Figure 3), that means σ_a - σ_w < σ_3 - σ_n. Thus, in Mohr-space (Figure 3), it is very easy to understand that a weakness with f_a>1.0 will lead to decrease in shear strength.

Because shear strength is related to normal stress and increases with increasing of normal stress, relative instead of absolute shear strength is more useful to consider. In order to quantitatively evaluate the shear strength decrease due to the existence of a weakness, we define the parameter f_d called Shear-strength coefficient (f_d = τ_a/τ_n where τ_a is the critical shear stress of weakness reactivation, τ_n is the shear stress on the same plane with the same normal stress σ_n at critical stress state of Coulomb rupture (σ_n, σ_w and σ_3 stress state in Figure 3)). It is easy to understand that the smaller Shear-strength coefficient (f_d) is the larger decrease will be in shear strength.

When f_a≥1.0, τ_a can never be greater than τ_n (as stress will drop down when weakness reactivates according to Reaction Tendency analysis theory [20] [21]. Furthermore, when f_a≤1.0, which means that weakness will not be reactivated at critical stress state of Coulomb rupture and will not lead to shear strength decrease (i.e., f_d = 1.0). Therefore, shear-strength coefficient can never be greater than 1.0 (f_a ≤ 1.0).

It is easy to find the following relationship between f_d and Reaction Tendency Factor (f_a) at critical stress state of Coulomb rupture—according to the definition of shear-strength coefficient and Reaction Tendency analysis theory [11]

\[
f_a = \frac{\tau_w}{\tau_n} = 1 / f_d = \frac{C_w + \mu_w \sigma_n}{\tau_n} \quad f_a ≥ 1.0
\]

\[
f_d = 1.0 \quad f_a ≤ 1.0
\]

The relationship between Shear-strength Coefficient (f_d) and the ratio of Differential stress can be derived at Coulomb rupture ((σ_w - σ_n) ≤ σ_3 - σ_n in Figure 3) and at critical state of weakness reactivation ((σ_w - σ_n) ≤ σ_3 - σ_n in Figure 3) according to the
definition of Shear-strength Coefficient and using Mohr-space, and it means that $f_d = \frac{\sigma - \gamma w}{\sigma - \sigma_a}$. As the relative position of the weakness pole in $(\sigma, \sigma_a, \sigma_d)$-Mohr-space (point A) and in $(\sigma, \sigma_a, \sigma_d)$-Mohr-space (point B) is the same, OA/OB is equal to the ratio of radius of the two big Mohr circle $(\sigma - \sigma_a, \sigma - \sigma_a)$, which means that $OA/OB = (\sigma - \sigma_a)/\sigma_a = (\sigma - \sigma_d)/\sigma_d$ while f_d is the stress tensor according to $(45^\circ + 0.5 \arctan (\mu))$. The relationship between f_d and weakness relative-orientation is the predominant factor which leads to shear strength anisotropies. It is noteworthy to understand that (θ', ϕ') of weakness is determined jointly by orientations of weakness and three axes of principal stresses.

Analysis of shear strength affection factors due to pre-existing weakness(es)

Shear-strength coefficient (f_d) is used to discuss how the related factors (mechanical properties and orientation of weakness, and $\sigma - \sigma_a$) affect shear strength due to preexisting weakness in triaxial stress state. As $f_d = 1/\gamma w$ and f_d can be intuitively and conveniently expressed in Mohr-space, Mohr-space is applied to do these analysis.

The relationship between f_d and weakness relative-orientation (θ', ϕ')

It is easy to see that when $\theta' = 90^\circ$, and $\phi' = \pm \phi_w$ (points A and A’ in Figure 4), f_d reaches the highest value, whereas f_d reaches the smallest value (Figure 4). Therefore, $(90^\circ, \pm \phi_w)$ (two points) are the two weakest relative-orientation of the weakness plane(s). As θ' decreases from 90°, and ϕ' deviates from ϕ_w, f_d will increase. In Mohr-space (Figure 4), the points of intersection between “weakness reactivation lines” and Mohr circles are demarcation points of weakness reactivation (B, B', B''), on $\sigma - \sigma_a$, large Mohr circle, C_w, and C_w' on $\sigma - \sigma_a$, small Mohr circle, Figure 4). The corresponding φ' of B, B', B'', and B'' is φ_w, φ_w, φ_w, and the corresponding θ' of C_w, C_w', and C_w'', is θ_w, θ_w, and $180^\circ - \theta_w$ respectively. It is easy to find that when $\varphi' = \varphi_w$, $\theta' = \theta_w$, and $180^\circ - \theta_w$, the weakness will all locate inside the two weakness reactivation lines (grey area in Figure 4) and f_d will always <1.0, which means there exist critical angle φ_w, φ_w, for $\varphi' = \varphi_w$, and $180^\circ - \theta_w$, for θ', when $\varphi' = \varphi_w$, or $\varphi' = \varphi_w$, or $\theta' = \theta_w$, or $\theta' = 180^\circ - \theta_w$, f_d will always <1.0, and the weakness cannot reactivate and will not lead shear strength decrease ($f_d = 1.0$).

Point A and A’ (Figure 4) are two Coulomb rupture points, and f_d of the same oriented weakness plane is the lowest. Weakness plane with low f_d value concentrates around point A (or A’) in the yellow area of Figure 4($\theta' = 90^\circ - 75^\circ$ and $\varphi' = \varphi_w + 15^\circ$). Change of f_d shows that weakness relative-orientation is the predominant factor which leads to shear strength anisotropies. It is noteworthy that (θ', φ') of weakness is determined jointly by orientations of weakness and three axes of principal stresses.
Weakness mechanical properties are the predominant factors which lead to shear strength decrease. For example, low friction coefficient ($\mu_w < 0.2$ [22]) and no cohesion along the weakness may lead to more than 90% shear strength decrease ($f_{d0} < 0.1$).

The relationship between f_d and relative value of σ_2

Shear strength is also related to relative value of σ_2 ($\frac{\sigma_2 - \sigma_1}{\sigma_2 - \sigma_3}$) [7]. However, our analysis in Mohr-space provided intuitive results which are easy to follow. It is easy to see that relative σ_2 ($\frac{\sigma_1 - \sigma_2}{\sigma_2 - \sigma_3}$) determines the shape of Mohr-space (Fig. 6). The relationship between $\frac{\sigma_1 - \sigma_2}{\sigma_2 - \sigma_3}$ and f_d is complicated and depends on θ' and ϕ', particularly ϕ' (Fig. 6). In general, ϕ' can be divided into 3 intervals: $\phi' \geq 70^\circ$, $40^\circ < \phi' < 70^\circ$, and $\phi' < 40^\circ$. When $\phi' \geq 70^\circ$, f_d will increase (P_{w1} in Fig. 6). When $40^\circ < \phi' < 70^\circ$, f_d decreases a little (P_{w3}, P_{w4} and P_{w5} in Fig. 6), and when $\phi' < 40^\circ$, f_d changes little (P_{w6} and P_{w7} in Fig. 6). These three cases are valid when σ_2 decrease (or $\frac{\sigma_1 - \sigma_2}{\sigma_2 - \sigma_3}$ increases, Fig. 6). As such, the change of σ_2 should not be ignored in shear strength analysis in the presence of pre-existing weakness. However, when $\phi' \geq 70^\circ$ or $\phi' < 40^\circ$ (particularly when $\phi' < 40^\circ$), most of the weaknesses usually cannot be reactivated at critical stress state of Coulomb rupturing and thus does not lead shear-stress decrease ($f_{d0} = 1.0$). As a result, the effect of relative σ_2 is most prominent only in the interval $40^\circ < \phi' < 70^\circ$; under normal circumstances, f_d will decrease a little with decreasing σ_2 (Fig. 6).

Shear strength evaluation for rock samples and geological bodies: theoretical analysis and verification

There are many kinds of pre-existing weakness, such as faults, geologic contacts, bedding and foliation that affect shear strength [23] [24] [25]. Based on their structure, Morley (2002) [26] divided weaknesses into two types: “discrete” and “pervasive”. Based on the value of cohesive strength, Tong and Yin (2011) [11] divide weaknesses into “strong weakness” (with relatively large cohesive strength, such as bedding, foliation etc.) and “weak weakness” (with relatively small or zero cohesive strength (i.e. ignorable), such as faults, fracture planes etc.). “Discrete” weakness is usually a “weak weakness”, and “pervasive” weakness probably is a “strong weakness”. We will evaluate the effect of “strong weakness” and “weak weakness” on shear strength in rock samples, and analyze deformation sequences with multiple pre-existing weaknesses in geological bodies.

Rock samples

“Pervasive” weaknesses (or “strong weakness”, bedding in sedimentary rocks, foliation in metamorphic rocks) do exist in rocks. There may also exist “pervasive” weaknesses in magmatic rocks with ductile deformation or flow foliation. In homogeneous-looking rock samples there may exist “pervasive” (particularly in sedimentary or metamorphic rocks) and /or “discrete” weaknesses (“weak weakness”, internal small or micro-fracture) leading to shear strength anisotropies.

In order to quantitatively evaluate shear strength decrease and anisotropies of rock samples with “pervasive” or “discrete” weakness, the situations of ① $C_w = 0.5C$, 0.33C and 0.2C for “pervasive” weakness, and $C_w = 0$ for “discrete” weakness, and ② $\frac{\sigma_1 - \sigma_2}{\sigma_2 - \sigma_3} = 0.5$, 1.0 and 2.0 are considered (let $\mu_w = \mu = 0.6$, $C = 20\text{MPa}$). Applying Mohr-space, the calculated values of Shear-strength Coefficient can be seen in Table 1. For other C_w values, the result is completely the same, while the result will change a little bit as $\mu (\mu_w)$ changes (if $\mu_w = \mu$). However, if μ_w changes while μ is constant, f_d will change proportionally with μ_w. The results show that “discrete” weakness may lead to more than 80% maximum drop of shear strength, while “pervasive” weakness usually leads to 20-60% maximum shear strength decrease for rock samples.

Haimson and Rudnicki (2010) [27] conducted true tri-axial compression tests on siltstone samples, and showed that shear strength is related to σ_2. Although the orientation of siltstone bedding is not mentioned in the paper, we speculate that the shear strength change is caused by “pervasive” weakness (siltstone bedding). If bedding does not lead to mechanical anisotropy (i.e. when it is mechanically homogeneous), shear strength will not change with σ_2. The tri-axial compression tests of Haimson and Rudnicki (2010) [28] may be the verification for the above theoretical analysis of dependece of shearstrength on...
Table 1: Shear-strength Coefficient (f_d) value in different value of C_w, relative σ_y, θ, and ϕ.

In the presence of multiple pre-existing weaknesses in a rock sample, each weakness has its own Shear-strength Coefficient. The overall Shear-strength Coefficient is determined by and is equal to that of the weakest weakness, where the Shear-strength Coefficient is the smallest, if interactions of weaknesses are ignored.

Geological bodies and deformation sequence

There are the two main differences between geological bodies and rock samples when the size and location of weakness are concerned. It is possible to prepare relatively homogeneous small rock samples (it is necessary for regular rock mechanics test). However, it is inevitable that there are pre-existing weaknesses more or less in the geological bodies, which will lead to shear strength decrease (shear strength is much smaller than that of rock samples [1] [2] [7]).

On a larger scale, there may or probably exist multiple weaknesses [13] in geological bodies (i.e. rift basins, orogenic belts, or a part of them). Different relative-orientation of the weaknesses and/or their mechanical properties will lead to different f_d of weakness. The relative-orientation and/or mechanical properties may also vary greatly along large scale pre-existing weakness (i.e. big pre-existing faults) and will lead to different f_d in different segments along the same weakness.

Unlike rock samples, in the presence of multiple pre-existing weaknesses in geological bodies, one of the weaknesses reactivation will lead to stress drop and form local stress field (Figure 9). The deformation in the progressive extension is summarized in the following:

<table>
<thead>
<tr>
<th>f_d</th>
<th>C_w</th>
<th>σ_y</th>
<th>θ</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0.70</td>
<td>0.62</td>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>0.50</td>
<td>0.77</td>
<td>0.62</td>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>0.55</td>
<td>0.84</td>
<td>0.62</td>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>0.60</td>
<td>0.91</td>
<td>0.62</td>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>0.65</td>
<td>0.98</td>
<td>0.62</td>
<td>0.55</td>
<td>0.49</td>
</tr>
</tbody>
</table>

C_w = cohesive strength, σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

With the above model (Figure 7), the weakness, with Shear-strength Coefficient $f_d < 1.0$, reactivated to form several faults, one after another, in the progressive extension as predicted, and Coulomb ruptures faults form at last (Figure 9). The deformation in the progressive extension is summarized in the following:

μ_w = coefficient of friction between paper and sand, μ_s = coefficient of friction between sand and paper, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.

C_w = cohesive strength of dry sand, μ = coefficient of friction between paper and loose sand, μ_{ws} = coefficient of friction between paper and loose sand, μ_{ss} = coefficient of friction between loose sand and sand.

σ_y = shear stress, θ = friction angle between the paper and loose sand, ϕ = friction angle of dry sand.
middle stage (after the weakness reactivated and before the fault near perpendicular to extension direction formed), weakness related faults which are parallel (or sub-parallel) to and controlled by P_{w1} or P_{w2} (antithetic and synthetic faults, fault numbers 3-8 in Figures 22b-2 and b-3) began to develop near the weakness plane area. In the final stage (Fig. 9b-3), faults near perpendicular to the extension direction (small faults in Figure 9b-3) began to develop. While the third weakness plane, which Shear-strength Coefficient $f_{w3} = 1.0$ ($f_{w3} = 0.85 < 1.0$, Fig. 8), does not reactivate as predicted. Similar experiments carried out by Tong and Yin (2011) [11] and Tong et al. (2014) [28] showed the same results.

Discussion

Although this study is expanding the work of Ranalli (1990) [5] and Morris et al [7], our newly defined Shear-strength Coefficient, newly developed graphical technique-Mohr-space and the underlying theoretically framework, which is based on Reactivation Tendency analysis theory (Tong and Yin, 2011), provide a much general and intuitive treatment of the shear strength decrease and anisotropies caused by pre-existing weaknesses. Specifically, the assumption that the weakness plane containing the intermediate stress (σ_1) in Ranalli’s (1990) [5] analysis can now be neglected. Finally, we predicted that weaknesses will reactivate sequentially according to the Shear-strength coefficient values order (from small to large) and new fractures (Coulomb rupture) form at last in the progressive deformation. It was verified by a simple sandbox experiment.

Both in this study and that of Ranalli (1990) [5], it is assumed that the preexisting weakness must be planar. This assumption, however, does not prevent the application of the analysis developed in this study to non-planar weaknesses, as curved surfaces can always be divided into approximately small planar segments. Another important assumption in our study is that fault formation, propagation and activity do not affect the regional stress distribution. This assumption is clearly an oversimplification, as both detailed analysis of fault-zone evolution and regional modeling show that frictional sliding on faults is capable of creating local stress fields near the faults that are different from the regional stress field [29] [30]. However, the results of our sandbox experiment imply...
that the effect of activating preexisting weakness does affect local stress, but is minimal in changing regional stress. More research is clearly needed to address this problem.

Possible complex interactions between faults that lie near one another were not considered in our model. As stress concentrates at crack tips, it is expected that complex stress fields can be induced by the presence of cracks or weaknesses under uniform regional stress [30] (e.g., Gudmundsson et al., 2009). Thus, our model should be considered as an idealized conceptual guide, which can only be used in realistic situations when the above factors are considered.

Despite the complexities discussed above, our analysis does provide a new insight into the temporal evolution of multiple pre-existing weaknesses with different shear-strength coefficient. Our analysis suggests that in a region with a progressive increase in the magnitude of differential stresses while the directions of the principal stresses are not changed, multiple phases of fault initiation with different trends can be generated. On the other hand, the results of theoretical analysis will provide some information and clues to understand actual shear strength decrease and anisotropies due to the pre-existing weaknesses.

Conclusion

Shear-strength coefficient (f_d), which is defined to evaluate the shear stress decrease due to the presence of pre-existing weaknesses, is determined by the orientation and mechanical properties of weakness (the intrinsic factors) and stress tensor (the external factors), and can be calculated quantitatively. It also can be expressed intuitively/graphically in Mohr-space. The results of theoretical analysis in Mohr-space show that:

(1) Weakness relative-orientation (θ', φ›), which is determined jointly by orientation of the weakness and three principal stress axis, is the predominant factor leading to shear strength anisotropies. (0°, φ›) and (180°, φ›) are two relative-orientations with the lowest f_d. As θ' increases from 0° or decreases from 180°, and φ› deviates from φ›, f_d will increase. There are critical angles φ›, φ'_1, and θ'_1, when φ'<φ'_1 or θ'<θ'_1, φ=φ'_1±15°, f_d increases.

(2) Weakness mechanical properties (C_w and μ_w) are the predominant factors that lead to shear strength decrease. "Discrete" weaknesses may suffer more than 80% decrease in maximum shear strength, while "pervasive" weaknesses usually suffer 20-60% decrease in maximum shear strength.

(3) The effect of relative σ_y (σ_y - σ_z) to shear strength is a little complicated, and is related to θ' and φ›, particularly φ›. The effect of relative σ_y is most prominent only in the interval 40° < φ' < 70°. Under normal circumstances, f_d will decrease a little with increasing σ_y.

In a region with a progressive increase in the magnitude of differential stresses acting on multiple pre-existing weaknesses, while the directions of the principal stresses maintain the same, multiple phases of fault initiation with different trends can be generated with predicted sequence according to their shear-strength coefficient (from small to large). This theoretical prediction was verified by the results of a sandbox model.

Acknowledgement

We would like to thank graduate students Mingyang WANG and Hua wu HAO for drawing the figures of the Mohr space and their help to complete the sandbox model. This study was supported by China National Major Project of Oil and Gas (2016ZX05024-005-004 & 2011ZX05023-004-0122011x05006-006-02-01) and China Natural Science Foundation (Grant No. 41272160&40772086). HAK is supported by the Swedish Research Council.

References

10. Sibson RH. Frictional constraints on thrust, wrench, and normal faults. Nature. 1974; 249: 542-44. doi: 10.1038/249542a0

